An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
John A. Schneeloch, Yu Tao, Jaime Fernandez-Baca, Guangyong Xu, Despina Louca
Stacking variations in quasi-two-dimensional materials can have an important influence on material properties, such as changing the topology of the band structure. Unfortunately, the weakness of van der Waals interactions makes it difficult to compute the
Falk Niefind, Henry Bell, Thuc Mai, Angela R. Hight Walker, Randolph Elmquist, Sujitra Pookpanratana
A photoemission electron microscope (PEEM) was recently commissioned at the NIST. To benchmark its capabilities, epitaxial graphene on 4H-SiC (0001) was imaged and analyzed in the PEEM and compared to other complementary imaging techniques. We determine
D. R. Yahne, D. Pereira, L. D. Jaubert, L. D. Sanjeewa, M. Powell, J. W. Kolis, Guangyong Xu, M. Enjalran, M. J. Gingras, K. A. Ross
Reentrance is a recurring theme found in a variety of physical systems, including spin glasses and black hole thermodynamics, yet the underlying microscopic mechanisms leading to it are rarely investigated in detail. Here we provide a detailed
Sajna Hameed, Joseph Joe, Laxman Thoutam, Javier Garcia Barriocanal, Biqiong Yu, Guichuan Yu, S. Chi, Tao Hong, Travis Williams, John W. Freeland, Peter M. Gehring, Zhijun Xu, Masaaki Matsuda, Bharat Jalan, Martin Greven
The Mott-insulating rare-earth titanates (RTiO 3, R being a rare-earth ion) are an important class of materials that encompasses interesting spin-orbital phases, ferromagnet-antiferromagnet and insulator-metal transitions. The growth of these materials has
G. Pokharel, H. Arachchige, S. Gao, S.-H. Do, R. Fishman, G. Ehlers, Yiming Qiu, Jose Rodriguez Rivera, M. B. Stone, H. Zhang, Stephen Wilson, D. Mandrus, A. Christianson
In the lacunar spinel GaV 4S 8, the interplay of spin, charge, and orbital degrees of freedom produces a rich phase diagram that includes an unusual Neel-type skyrmion phase composed of molecular spins. To provide ´ insight into the interactions underlying
Thomas Harrelson, Evan Sheridan, Ellis Kennedy, John Vinson, Alpha N'Diaye, M. Altoe, Alex Weber-Bargioni, Adam Schwartzberg, Irfan Siddiqi, D. Ogletree, Mary Scott, Sinead Griffin
Qubits made from superconducting materials are a mature platform for quantum information science application such as quantum computing. However, materials-based losses are now a limiting factor in reaching the coherence times needed for applications. In
A magnetic monopole in spin ice is a novel quasiparticle excitation in condensed matter physics, and we found that the AC frequency dependent magnetic susceptibility X(ω) in the two-dimensional (2D) spin ice (so-called kagome ice) of Dy 2Ti 2O 7 shows a
Sai Meghasena Chavali, John Roller, Mario Dagenais, Behrang Hamadani
External luminescence quantum yields of subcells within several multijunction solar cells were measured using a calibrated hyperspectral imaging system in electroluminescence mode. The measurements allowed direct comparison of subcell device parameters
Wilson Yanez, Yongxi Ou, Run Xiao, Jahyun Koo, Jacob T. Held, Supriya Ghosh, Jeffrey Rable, Timothy Pillsbury, Enrique Gonzalez Delgado, Kezhou Yang, Juan Chamorro, Alexander Grutter, Patrick Quarterman, Anthony Richardella, Abhronil Sengupta, Tyrel M. McQueen, Julie Borchers, K. A. Mkhoyan, Binghai Yan, Nitin Samarth
We report spin-to-charge and charge-to-spin conversion at room temperature in heterostructure devices that interface an archetypal Dirac semimetal, Cd 3As 2, with a metallic ferromagnet,Ni 0.80Fe 0.20 (permalloy). The spin-charge interconversion is
Yueming Guo, Sergei Kalinin, Cai Hui, Kai Xiao, Sergiy Krylyuk, Albert Davydov, Qianying Guo, Andrew Lupini
Crystallographic defects can now be routinely imaged at atomic resolution with aberration-corrected scanning transmission electron microscopy (STEM) at high speed, with the potential for vast volumes of data to be acquired in relatively short times, or