Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 326 - 350 of 2290

Dual current anomalies and quantum transport within extended reservoir simulations

October 19, 2021
Author(s)
Gabriela Wojtowicz, Justin E. Elenewski, Marek Rams, Michael P. Zwolak
Quantum transport simulations are rapidly evolving, including the development of well–controlled tensor network techniques for many– body transport calculations. One particularly powerful approach combines matrix product states with extended reservoirs —

Magnetic Field-Induced Non-Trivial Electronic Topology in Fe 3-x GeTe 2

October 7, 2021
Author(s)
Juan Macy, Danilo Ratkovski, Purnima P. Balakrishnan, Mara Strungaru, Yu-Che Chiu, Aikaterini Flessa, Alex Moon, Wenkai Zheng, Ashley Weiland, Gregory T. McCandless, Julia Y. Chan, Govind S. Kumar, Michael Shatruk, Alexander Grutter, Julie Borchers, William D. Ratcliff, Eun S. Choi, Elton J. Santos, Luis Balicas
The anomalous Hall, Nernst and thermal Hall coefficients of the itinerant ferromagnet Fe 3−xGeTe 2 display several features upon cooling, like a reversal in the Nernst signal below T = 50 K pointing to a topological transition possibly associated to the

Performance of Reservoir Discretizations in Quantum Transport Simulations

September 29, 2021
Author(s)
Justin E. Elenewski, Gabriela Wojtowicz, Marek Rams, Michael P. Zwolak
Quantum transport simulations require a level of discretization, often achieved through an explicit representation of the electronic reservoirs. These representations should converge to the same continuum limit, though there is a trade-off between a given

Magnetic Properties and Signatures of Ordering in Triangular Lattice Antiferromagnet KCeO 2

September 15, 2021
Author(s)
Mitchell M. Bordelon, Xiaoling Wang, Daniel M. Pajerowski, Arnab Banerjee, Mark Sherwin, Craig Brown, M. Eldeeb, T. Petersen, L. Hozoi, U. Robler, Martin Mourigal
The magnetic ground state and the crystalline electric field level scheme of the triangular lattice antiferromagnet KCeO 2are investigated. Below T N = 300 mK, KCeO 2 develops signatures of magnetic order in specific heat measurements and low energy

Phase Diagram of YbZnGaO 4 in Applied Magnetic Field

September 15, 2021
Author(s)
William Steinhardt, P. A. Maksimov, Sachith Dissanayake, Zhenzhong Shi, Nicholas Butch, David Graf, Andrey Podlesnyak, Yaohua Liu, Yang Zhao, Guangyong Xu, Jeffrey Lynn, Casey Marjerrison, A. L. Chernyshev, Sara Haravifard
Recently, Yb-based triangular lattice antiferromagnets have garnered significant interest as possible quantum spin liquid candidates. One example is YbMgGaO 4, which showed many promising spin liquid features, but also possesses a high degree of disorder

Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic (10B) hexagonal boron nitride at room temperature

September 14, 2021
Author(s)
Georges Pavlidis, Jeffrey Schwartz, Joseph Matson, Thomas Folland, Song Liu, James Edgar, Joshua Caldwell, Andrea Centrone
Hyperbolic phonon polaritons (HPhPs) enable arbitrarily high confinements, low losses, and directional propagation – providing opportunities from hyperlensing to flat optics, and other advanced nanophotonics applications. In this work, two near-field

The case for a U(1) p Quantum Spin Liquid Ground State in the Dipole-Octupole Pyrochlore Ce 2 Zr 2 O 7

September 7, 2021
Author(s)
E. Smith, O. Benton, D. Yahne, B. Placke, Jonathan Gaudet, J. Dudemaine, A. Fitterman, J. Beare, A. Wildes, S. Bhattacharya, T. DeLazzer, C.R.C. Buhariwalla, Nicholas Butch, R. Movshovich, J. Garrett, C. Marjerrison, J. Clancy, E. Kermarrec, G. Luke, A. Bianchi, K. A. Ross, B. Gaulin
The Ce3 + pseudospin-1/2 degrees of freedom in the pyrochlore magnet Ce 2Zr 2O 7 are known to possess dipole-octupole (DO) character, making it a candidate for novel quantum spin liquid (QSL) ground states at low temperatures. We report new heat capacity
Was this page helpful?