NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Brian Hemingway, T. G. Atkin, Steven Peil, James(Trey) Porto
We observe bimodal uorescence patterns from atoms in a fast atomic beam when the laser excitation occurs in the presence of a magnetic eld and the atoms sample only a portion of the laser pro le. The behavior is well explained by competition between the
Alexander Smolyanitsky, Alta Y. Fang, Andrei Kazakov, Eugene Paulechka
We combine quantum-chemical calculations and molecular dynamics simulations to consider aqueous ion flow across non-axisymmetric nanopores in monolayer graphene and MoS2. When the pore-containing membrane is subject to uniaxial tensile strains applied in
John Yi, Sergio Romero Servin, Leonardo Alvarez Valtierra, David F. Plusquellic
Rotationally resolved electronic spectra of two conformational isomers of jet-cooled Indole-4-Carboxylic Acid (I4CA) and the deuterated forms of the acid (COOD) and amide (N-D) groups have been obtained using a UV laser/molecular beam spectrometer. The in
Dipti Goyal, A. Borovik, Jr., R. Silwal, Joan M. Dreiling, Amy C. Gall, Endre Takacs, Yuri Ralchenko
We present accurate spectroscopic measurements and detailed theoretical analysis of inner-shell LM$n$ and LN$n$ ($n$ $\geq$ 4) dielectronic resonances (DR) in highly-charged M-shell ions of tungsten. The x-ray emission from W$^49+}$ through W$^64+}$ was
Douglas Bopp, Ellyse Taylor, Khoa Le, Susan Schima, Matthew Hummon, John Kitching
Atomic vapors are a crucial platform for precision metrology but in their simplest implementation, a thermal vapor, the intrinsic optical resonances are broadened due to the random and isotropic thermal motion of the atoms. By structuring the container of
Gaoxiang Liu, Manuel Diaz-Tinoco, Sandra M. Ciborowski, Chalynette Martinez-Martinez, Svetlana Lyspustina, Jay H. Hendricks, Vincent Ortiz, Kit H. Bowen
The hydrogen sulfide trimer and tetramer anions, (H2S)3– and (H2S)4–, were generated by Rydberg electron transfer and studied via a synergy between velocity-map imaging anion photoelectron spectroscopy and high-level quantum chemical calculations. The
Daniel Woodbury, Robert Schwartz, Ela Rockafellow, Jared Wahlstrand, H M. Milchberg
Multiphoton and tunneling ionization are fundamental processes in strong field laser-matter interactions, and are integral to applications such as high harmonic generation, filamentation, and laser plasma production. However, measurements of ionization
Constantinos Makrides, Daniel Barker, James A. Fedchak, Julia Scherschligt, Stephen Eckel, Eite Tiesinga
We have computed the thermally-averaged total, elastic rate coefficient for the collision of a room-temperature helium atom with an ultra-cold lithium atom. This rate coefficient has been computed as part of the characterization of a cold atom vacuum
This review article discusses a few theoretical and numerical approaches that have been successfully used to treat electron scattering and photoionization of atoms and molecules and the interaction of those systems with intense, short-pulse electromagnetic
Jacob W. Ward, A J. Raassen, Alexander Kramida, Gillian Nave
This work presents 97 remeasured Fe V wavelengths (1200 Å to 1600 Å) and 123 remeasured Ni V wavelengths (1200 Å to 1400 Å) with uncertainties of approximately 2 mÅ. An additional 67 remeasured Fe V wavelengths and 72 remeasured Ni V wavelengths with
A. Craddock, J. Hannegan, D. Ornelas-Huerta, J. Siverns, A. Hachtel, E. Goldschmidt, James V. Porto, Q. Quraishi, S. Rolston
Many remote-entanglement protocols rely on the generation and interference of photons produced by nodes within a quantum network. Quantum networks based on heterogeneous nodes provide a versatile platform by utilizing the complimentary strengths of the
We present synthetic spectra for light emission following charge exchange (CX) recombination for W64+ ions colliding with neutral atomic hydrogen at 100 keV/u and 500 keV/u, of relevance to the plasma diagnostics of the international experimental fusion
Tian M. Zhao, Yan Chen, Yu Ying, Li Qing, Marcelo I. Davanco, Jin Liu
Photonic quantum technology is creating breakthroughs in both fundamental quantum science and applications such as quantum communication, computation and sensing. Regarded as artificial atoms due to the discrete energy levels they support, semiconductor
Thomas R. Gentile, Michael G. Huber, Muhammad D. Arif, Daniel Hussey, David Jacobson, Donald D. Koetke, Murray Peshkin, Thomas Dombeck, Paul Nord, Dimitry A. Pushin, Robert Smither
The neutron spin-orbit interaction, which results from the interaction of a moving neutron's magnetic dipole moment (MDM) with the atomic electric fields, induces a small rotation of the neutron's spin in one Bragg reflection. In our experiment neutrons
Alina M. Pineiro Escalera, Mingwu Lu, Dina Genkina, Ian Spielman
We quantum-simulated particle-antiparticle pair production with a bosonic quantum gas in an optical lattice by emulating the requisite 1d Dirac equation and uniform electric field. We emulated field strengths far in excess of Sauter-Schwinger's limit for
Roshani Silwal, Endre Takacs, Joan M. Dreiling, John D. Gillaspy, Yuri Ralchenko
Extreme-ultraviolet spectra of the L-shell ions of highly charged yttrium Y26+ - Y36+ were observed in the electron beam ion trap of the National Institute of Standards and Technology using a flat-field grazing-incidence spectrometer in the wavelength
Peter Schnauber, Anshuman Singh, Johannes Schall, Suk I. Park, Jin Dong Song, Sven Rodt, Kartik Srinivasan, Stephan Reitzenstein, Marcelo I. Davanco
With in-situ electron beam lithography we deterministically integrate single InAs quantum dots into heterogeneous GaAs/Si3N4 waveguide circuits. Through microphotoluminescence spectroscopy, we show on-chip quantum dot emission of single, postselected