NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
A fundamental tenet of quantum mechanics is that measurements change a system's wavefunction to that most consistent with the measurement outcome, even if no observer is present. Weak measurements produce only limited information about the system, and as a
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.
Matthew Affolter, Wenchao Ge, Bryce Bullock, Shaun Burd, Kevin Gilmore, Jennifer Lilieholm, Allison Carter, John J. Bollinger
Improving coherence is a fundamental challenge in quantum simulation and sensing experiments with trapped ions. Here we discuss, experimentally demonstrate, and estimate the potential impacts of two different protocols that enhance, through motional
Ian Spielman, Gediminas Juzeliunas, Edvinas Gvozdiovas
We describe a two-dimensional optical lattice for ultracold atoms with spatial structure below the diffraction limit created by a bichromatic optical standing wave. At every point in space these fields couple the internal atomic states in a three-level
Megan Kelleher, Charles McLemore, Dahyeon Lee, Josue Davila-Rodriguez, Scott Diddams, Franklyn Quinlan
We develop and demonstrate a compact (less than 6 mL) portable Fabry-Pérot optical reference cavity. A laser locked to the cavity is thermal noise limited at 2 × 10−14 fractional frequency stability. Broadband feedback control with an electro-optic
Zachary Whipps, Jake A. Connors, Bradley Dober, Johannes Hubmayr, John Mates, Caleb Wheeler, John Groh, Jason Austermann, Leila Vale, Gene C. Hilton, Jiansong Gao, Shannon Duff, Joel Ullom, Ed Denison
The microwave SQUID multiplexer ($\mu$MUX) is a high channel-count multiplexer that, when coupled to low-temperature detectors such as Transition Edge Sensor (TES) Bolometers, has applications across astronomy and physics. Our primary application is for
The finite solid-liquid interface width in phase-field models results in non-equilibrium effects, including solute trapping. Prior phase field modeling has shown that this extra degree of freedom, when compared to sharp-interface models, results in solute
Michael Woodcox, Avik Mahata, Aaron Hagerstrom, Angela Stelson, Chris Muzny, Ravishankar Sundararaman, Kathleen Schwarz
We demonstrate a method to compute the dielectric spectra of fluids in molecular dynamics by directly applying electric fields to the simulation. We obtain spectra from molecular dynamics simulations with low magnitude electric fields (0.01 V/A) in
Shaun C. Burd, Jussi-Pekka Penttinen, Panyu Hou, Hannah Knaack, Sanna Ranta, Mika Maki, Emmi Kantola, Mircea Guina, Daniel Slichter, Dietrich Leibfried, Andrew C. Wilson
We demonstrate two systems based on vertical-external-cavity surface-emitting lasers (VECSELs) for producing ultraviolet laser light at wavelengths of 235 and 313 nm. The systems are suitable for quantum information processing with trapped beryllium ions
We examine the effect of a parasitic rf magnetic field, attributed to ion trapping, on the highly anticipated nuclear clock based on $^229}$Th$^3+}$ [C. J. Campbell \it et al.}, Phys.\ Rev.\ Lett.\ 108, 120802 (2012)]. The rf magnetic field induces an ac
Charles S. Tarrio, Robert F. Berg, Thomas B. Lucatorto, Dale E. Newbury, Nicholas Ritchie, Andrew Jones, Frank Eparvier
The two most prevalent outgas contaminants on satellites are organic molecules and water vapor. Adsorbed organic molecules can degrade a solar-viewing instrument when they are cracked by ultraviolet radiation (UV) and become a light-absorbing layer of
FNU Nur Fajar Rizqi Annafianto, Jabir Marakkarakath Vadakkepurayil, Ivan Burenkov, Abdella Battou, Sergey Polyakov
We experimentally demonstrate a quantum-measurement-based receiver for a range of modulation schemes and alphabet lengths in a telecom C-band. We attain symbol error rates below the shot noise limit for all the studied modulation schemes and the alphabet
Brian DeCost, Ramya Gurunathan, Adam Biacchi, Kamal Choudhary
Computer vision techniques have immense potential for materials design applications. In this work, we introduce an integrated and general-purpose AtomVision library that can be used to generate and curate microscopy image (such as scanning tunneling
Radio station WWV, famous for the "at the tone ...." announcements broadcast at the top of each minute, is known to shortwave listeners and radio amateurs worldwide as a trusted source of accurate time. However, you might not know that the original purpose
Ramya Gurunathan, Kamal Choudhary, Francesca Tavazza
The phonon density-of-states (DOS) summarizes the lattice vibrational modes supported by a structure, and gives access to rich information about the material's stability, thermodynamic constants, and thermal transport coefficients. Here, we present an
Adam Biacchi, Oluwagbemiga Ojo, Wilarachchige Gunatilleke, George Nolas
The structural, thermal, and electronic properties of Ba2MnSe3 were investigated. Analysis of the low-temperature heat capacity revealed a low Debye temperature and a low average speed of sound that, together with the bonding in this material, result in a