NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Jason K. Lee, ChungHyuk Lee, Benzhong Zhao, Jacob LaManna, Eli Baltic, Daniel S. Hussey, David L. Jacobson, Aimy Bazylak
Reaching high current densities is absolutely imperative for electrochemical energy conversion, from fuel cells to CO2 reduction. Here, we identify the existence of a performance indicator for gas-evolving electrochemical energy conversion devices: the
Lee Richter, Artem Levistsky, Giovanni M. Matrone, Aditi Khirbat, Ilaria Bargigia, Xiaolei Chu, Oded Nahor, Tamar Segal-Perez, Adam Moule, Carlos Silva, Natalie Stingelin, Gitti L. Frey
The ever increasing library of materials systems developed for organic solar-cells, including highly promising non-fullerene acceptors and new, high-efficiency donor polymers, demands the development of methodologies that (i) allow fast screening of a
The external luminescence quantum yield as a function of the solar cell current density when exposed to low indoor light was estimated based on absolute electroluminescence measurements and a self-consistent use of the electro-optical reciprocity
Ocean Thermal Energy Conversion (OTEC) is among the small number of renewable energy production systems that can provide base load capacity. Ammonia has long been proposed and tested as a working fluid for these systems. Are there any other superior fluids
Xiong Peng, Devashish Kulkarni, Ying Huang, Travis J. Omasta, Benjamin Ng, Yiwei Zheng, Lianqin Wang, Jacob LaManna, Daniel S. Hussey, John R. Varcoe, Iryna V. Zenyuk, William E. Mustain
Operando neutron imaging and operando micro X-ray computed tomography were used to understand the water dynamics of AEMFCs under various operating conditions, and this new fundamental information was used to create electrodes that not only enabled high
Wei Tang, Andy Tam, Liming Yuan, Thomas Dubaniewicz, Richard Thomas, John Soles
A detailed experimental investigation on the critical external heat leading to the failure of lithium-ion (Li-ion) batteries was conducted using an Accelerating Rate Calorimeter (ARC) at the National Institute for Occupational Safety and Health (NIOSH)
Lee Richter, Ian Pelse, Jeff Hernandez, Sebastian Engmann, Andrew Herzing, John R. Reynolds
The adoption of solution processed active layers in the production of thin-film photovoltaics is hampered by the transition from research fabrication techniques to scalable processing. We report a detailed study of the role of processing in determining the
Jacob LaManna, Aimy Bazylak, ChungHyuk Lee, Jason K. Lee, Kieran F. Fahy, Eli Baltic, Daniel S. Hussey, David L. Jacobson
In this work, we investigated the impact of temperature on two-phase transport in low temperature (LT)-polymer electrolyte membrane (PEM) electrolyzer anode flow channels via in operando neutron imaging and observed a decrease in mass transport
Due to the rapidly growing interest in energy harvesting from indoor ambient lighting for the powering of internet-of-things devices, accurate methods for proper measurements of the current vs voltage characteristics of light-harvesting solar photovoltaic
Matthew J. Connolly, Z. N. Buck, Carlos Wexler, Joseph C. Schaeperkoetter, H. Taub, Andrew Gillespie, Helmut Kaiser
We present quasielastic neutron scattering (QENS) spectra from molecular hydrogen adsorbed in GOF. The measurements probed the motion of adsorbed hydrogen as a function of pressure, in order to understand the relationship between the motion of adsorbed
Timothy R Prisk, Alexander I. Kolesnikov, Garrett E. Granroth, Jun-li Lin, Brent J. Heuser
We report on an inelastic neutron scattering study of the proton dynamics in ZrH 0.0155 and -ZrHd2^. In particular, we present measurements of the incoherent dynamic structure factor, generalized vibrational density of states, and proton momentum
Margherita Biondi, Min-Jae Choi, Olivier Ouellette, Se-Woong Baek, Petar Todorovi?, Bin Sun, Peicheng Li, Ahmad R. Kirmani, Laxmi Chiluka, Lee J. Richter, Sjoerd Hoogland, Zheng-Hong Lu, F. Pelayo Garc?a de Arquer, Edward H. Sargent, Mingyang Wei
Colloidal quantum dots (CQDs) are of interest in light of their solution-processing and bandgap tuning. Advances in the performance of CQD optoelectronic devices require fine control over the properties of each layer in the device materials stack. This is
Greg P. Smestad, Thomas Germer, Hameed Alrashidi, Eduardo F. Fern?ndez, Sumon Dey, Paidisetty S. Kumar, Honey Brahma, Aritra Ghosh, Nazmi Sellami, Ibrahim A. Hassan, Amal Kasry, Bala Pesala, S. Senthilarasu, Florencia Almonacid, K. S. Reddy, Tapas K. Mallick, Leonardo Micheli
The accumulation of soiling on photovoltaic (PV) modules affects PV systems worldwide. Soiling consists of mineral dust, soot particles, aerosols, pollen, fungi and/or other contaminants that deposit on the surface of PV modules. Soiling absorbs, scatters
Lee J. Richter, Ahmad R. Kirmani, Albertus A. Sutano, Nikita Drigo, Ines G. Benito, Valentine I. Queloz, Kyung T. Cho, Pascal A. Schouwink, Mohammad K. Nazeeruddin, Giulia Grancini, Sanghyun Paek
Engineering two-/three-dimensional (2D/3D) perovskite solar cells is nowadays a popular strategy for efficient and stable devices. However, the exact function of the 2D/3D interface in controlling the long-term device behavior is still obscure. Here, we
Lee J. Richter, Ahmad R. Kirmani, Xue Wang, Wang Ziyuan, Dinh Cao-Thang, Li Jun, Nam Dae-Hyun, Li Fengwang, Huang Chun-Wei, Tan Chih-Shan, Chen Zitao, Chi Miaofang, Gabardo M. Christine, Seiifitokaldani Ali, Todorovic Petar, Proppe Andrew, Pang Yuanjie, wang yuhang, Ip H. Alexander, Shen-Chuan Lo, shana O. kelley, David Sinton, Edward H. Sargent, Tao-Tao Zhuang, Benjamin Scheffel
The electroreduction of C1 feedgas to high-energy-density fuels provides an attractive avenue to the storage of renewable electricity. Much progress has been made to improve selectivity to C1 and C2 products, however, the selectivity to desirable high
Yohan Yoon, Wei-Chang Yang, Dongheon Ha, Paul M. Haney, Daniel Hirsch, Heayoung Yoon, Renu Sharma, Nikolai Zhitenev
In this work, we employ two techniques, near-field scanning photocurrent microscopy (NSPM) and transmission electron microscope based cathodoluminescence spectroscopy (TEM-CL), to analyze the nanoscale electrical and optical properties of CdTe solar cells
Yuxuan Wang, Hao Shen, Ken J. Livi, David Raciti, Han Zong, John Gregg, Mofopefoluwa Onadeko, Yidong Wang, Adam Watson, Chao Wang
Electroreduction of CO2 represents a promising solution for addressing the global challenges in energy and sustainability. The reaction is highly sensitive to the surface structure of electrocatalysts and the local electrochemical environment. We have
Joseph C. Schaeperkoetter, Matthew J. Connolly, Haskell Taub, Helmut Kaiser, Carlos Wexler
We have investigated adsorption-induced deformation in graphene oxide frameworks (GOFs), using neutron diffraction. GOFs use a spacer molecule to create a slit-shaped pore defined by two adjacent parallel graphene-oxide (GO) sheets. They are an ideal
Christopher P. Looney, Matthew J. Connolly, Peter E. Bradley, Andrew J. Slifka, Robert L. Amaro
Vessels used to transport pressurized gasses via truck must be approved for service by the U.S. Department of Transportation. Many of the most common, relatively small volume, pressure vessels in service are designated as DOT 3AA cylinders. The
Matthew J. Connolly, May L. Martin, Peter E. Bradley, Damian S. Lauria, Andrew J. Slifka, Jun Sang Park, Robert Amaro
The deformation fields near fatigue crack tips grown in hydrogen and in air were measured using high-energy x-ray diffraction. A larger magnitude of elastic strain was observed in the hydrogen case compared to the air case. The magnitude of elastic strain
In this paper cooperative spectrum sharing is considered between a primary user (PU) and a secondary user(SU), where the off-the-grid secondary transmitter (ST) serves as a cognitive relay to forward both the received primary and secondary signals by
Lee J. Richter, Ahmad R. Kirmani, Marine E. Bouduban, Valentine I. Queloz, Valentina M. Caselli, Kyung T. Cho, Sanghyun Paek, Cristina Roldan-Carmona, Jacques E. Moser, Tom J. Savenije, Mohammad K. Nazeeruddin, Giulia Grancini
Combining halide perovskites with tailored dimensionality into two/three-dimensional (2D/3D) systems has revealed a powerful strategy to boost the performances of perovskite photovoltaics (PVs). Despite recent advances, a clear understanding of the
Nicolas Marquez Peraca, Paul M. Haney, Behrang Hamadani
Luminescent coupling in multijunction solar cells has a major impact on device response and its impact on current-voltage and quantum efficiency measurements is well established. However, the role of luminescent coupling in more advanced characterization
Vladimir P. Oleshko, William R. McGehee, Saya Takeuchi, Siyuan Zhang, Andrei A. Kolmakov, Jabez J. McClelland, Christopher L. Soles
Lithium-sulfur (Li-S) batteries have recently attracted enormous attention because of high theoretical specific energy (2600 Wh kg-1) and high specific capacity (1672 mAhg-1), as well as the low cost, natural abundance, and nontoxicity of elemental sulfur