An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Sang M. An, Jie Zou, Glenn Holland, Jungseok Chae, Andrea Centrone, Vladimir Aksyuk
We introduce an optomechanical transducer-based nanoscale cantilever for atomic force microscope (AFM). The high optical quality factor of the microdisk resonator enables detection of the nanoscale cantilever motion with high sensitivity. A low stiffness
John R. Jendzurski, Nicholas G. Paulter Jr., Michael Harner, Ram Narayanan
It is common practice to use a metal conducting sphere for radar calibration purposes. The aspect-independence of a sphere allows for a more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the
We demonstrate the precision molecular spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system. Successive interferograms, acquired at a rate of Δfrep = 1 MHz, were phase-corrected in post-processing, averaged, and
The goal of this exploratory project is to demonstrate the feasibility of a conductometric measurement to determine the time-resolved soot deposition on surfaces in fire environments. Quantitative soot deposition data enabled by this measurement method is
Joseph W. Fowler, Christine G. Pappas, Bradley K. Alpert, William B. Doriese, Galen C. O'Neil, Joel N. Ullom, Daniel S. Swetz
We consider how to analyze microcalorimeter pulses for quantities that are nonlinear in the data, while preserving the signal-to-noise advantages of linear optimal filtering. We apply the approach to compute the electrothermal feedback energy deficit (the
Christopher L. Soles, Richard A. Vaia, Ronald Pindak
The round-table participants concluded that facilities at NSLS-II provide immediate opportunities to address some of the critical processing and measurement challenges that are blocking the path towards a sustainable US-centric Flexible Hybrid Electronic
This paper reports on the design and implementation of an analog feedback controller for generating parametric resonance in linear microresonators that do not intrinsically demonstrate this phenomenon. It is shown that the controller produces a fundamental
Kelsey M. Morgan, Christine G. Pappas, Douglas A. Bennett, Johnathon D. Gard, James P. Hays-Wehle, Gene C. Hilton, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Daniel S. Swetz
If transition-edge sensor (TES) X-ray detectors are to be useful in photon-rich environments,they must maintain high resolving power when pulse durations are engineered to be short, which is usually accomplished by increasing the thermal conductance (G)to
The objective of the Advanced Electrical Power Sensors Workshop was to provide input into planning processes being undertaken by the National Institute of Standards and Technology (NIST), Department of Energy (DOE), and the Grid Modernization Laboratory
Ying Liu, Ali Rahimian, Sergiy Krylyuk, Tam Vu, Bruno Crulhas, Gulnaz Stybayeva, Dong-Sik Shin, Albert Davydov, Alexander Revzin, Meruyert Imanbekova
Cytokines are small proteins secreted by immune cells in response to pathogens/infections; therefore these proteins can be used in diagnosing infectious diseases. For example, release of a cytokine interferon (IFN)-γ from T-cells is used for blood-based
Manufacturers need automated, efficient, and robust methods to diagnose the condition of their machine tool linear axes with minimal disruptions to production. Recently, a method was developed to use data from an inertial measurement unit (IMU) to measure
Pengfei Niu, Brian J. Nablo, Kiran Bhadriraju, Darwin Reyes-Hernandez
Here we describe the exact processes occurring between two metallic electrodes when measuring volumetric flow rate by electrical impedance in polydimethylsiloxane (PDMS) microchannel. A considerable fraction of the change in impedance, due to change of
Megan C. Kreider, Zeeshan Ahmed, Makfir Sefa, James A. Fedchak, Julia Scherschligt, Michael Bible, Nikolai Klimov, Bharath Natarajan, Hartings Mathew
The push to advance efficient, renewable, and clean energy sources has brought with it an effort to generate materials that are capable of storing hydrogen. Metal-organic framework materials (MOFs) have been the focus of many such studies as they are
Ward L. Johnson, Danielle C. France, Nikki S. Rentz, William T. Cordell, Fred L. Walls
A new approach is presented for sensing mechanical fluctuations of populations of bacteria, with potential application in monitoring microbial responses to changes in chemical environment, such as antimicrobial intervention. Bacteria are tethered to a
Thao Nguyen, Anirudha Sahoo, Michael R. Souryal, Timothy Hall
Spectrum sharing in the 3.5~GHz band between commercial and government users along U.S. coastal areas depends on an Environmental Sensing Capability (ESC)---that is, a network of radio frequency sensors and a decision system---to detect the presence of
Yiliang Bao, Feng Zhou, Thomas W. LeBrun, Jason J. Gorman
This paper describes the design, fabrication, and testing of a photonic MEMS accelerometer that uses a hemispherical microcavity to transduce the motion of the proof mass. The cavity design provides stable operation that is relatively tolerant of
Atmospheric chemical doping can be used to modify the electronic properties of graphene. Although extensive experimental work on tuning atmospheric chemical doping of graphene has been reported, such a study of graphene on SiC is still lacking. Here we
Shiqi Guo, Abbas Arab, Sergiy Krylyuk, Albert Davydov, Mona E. Zaghloul
Recent advances in two-dimensional (2D) transition metal dichalcogenides have demonstrated their potential application in chemical sensors. However, the chemical vapor deposition (CVD) grown molybdenum disulfide (MoS2) humidity sensors are still largely
Smart grids (SGs) are electrical power grids that apply information, advanced networking, and real-time monitoring and control technologies to lower costs, save energy, and improve security, interoperability, and reliability. Smart sensors (SSs) can
The goal of this work is to systematically demonstrate the effectiveness of one-dimensional phononic crystal (1-D PnC) tethers as a means to significantly reduce tether loss in micromechanical resonators to a point where the total energy loss is dominated
Ivan Ryger, Paul A. Williams, Nathan A. Tomlin, Alexandra B. Artusio-Glimpse, Michelle S. Stephens, Matthew T. Spidell, John H. Lehman
Measurement of high optical power using radiation pressure sensing [1] is attractive for its non-absorbing power measurment allowing compact sensor dimensions, faster response times and negligible optical power dissipation compared to standard thermal
Vladislav P. Gerginov, Sean P. Krzyzewski, Svenja A. Knappe
A scalar magnetic field sensor based on 87Rb vapor millimeter-size cell is described. The magnetometer uses co-propagating pump/probe laser beam, amplitude modulation of the pump beam and non-demolition polarization rotation detection of the probe beam
Paul NMN Salipante, Steven D Hudson, James W. Schmidt, John D. Wright
The accurate measurement of flows in microfluidic channels is important for commercial and research applications. We compare the accuracy of flow measurement techniques over a wide range flows. Flow measurements made using holographic microparticle
Gregory W. Vogl, Radu Pavel, Andreas Archenti, Thomas J. Winnard, Matlock M. Mennu, Brian A. Weiss, Alkan Donmez
Machine tools degrade during operations, yet accurately detecting degradation of machine components such as linear axes is typically a manual and time-consuming process. Thus, manufacturers need automated and efficient methods to diagnose the condition of