NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Thomas Forbes, Jeffrey Lawrence, Jennifer R. Verkouteren, R. Michael Verkouteren
The opioid crisis and emergence of fentanyl, fentanyl analogues, and other synthetic opioids has highlighted the need for sensitive and robust detection for interdiction at screening points, notably vehicles at border crossings and packages at postal
Arvind K. Balijepalli, Son T. Le, Harish C. Pant, Curt A. Richter
We have developed biosensors based on dual-gated field-effect transistors (FETs) that operate at the quantum capacitance limit. The FETs are fabricated with atomically thin MoS2 semiconducting films and top-gated with a room temperature ionic-liquid. The
Weston L. Tew, Jifeng Qu, K L. Zhou, Samuel P. Benz, Horst Rogalla, David R. White
Johnson noise thermometers infer thermodynamic temperature from measurements of the thermally-induced current fluctuations that occur in all electrical conductors. This paper reviews the status of Johnson noise thermometry and its prospects for both
Jared H. Strait, Glenn E. Holland, Wenqi Zhu, Cheng Zhang, Bojan R. Ilic, Amit K. Agrawal, Domenico Pacifici, Henri J. Lezec
The photon-drag effect, the rectified current in a medium induced by conservation of momentum of absorbed or redirected light, is a unique probe of the detailed mechanisms underlying radiation pressure. We revisit this effect in gold, a canonical Drude
Yangyang Zhao, Kalisadhan Mukherjee, Kurt D. Benkstein, Libin Sun, Kristen L. Steffens, Christopher B. Montgomery, Stephen Semancik, Mona Zaghloul
The present work demonstrates development of a miniaturized plasmonic platform comprised of a Au nanohole array (NHA) on a Si/Si3N4 substrate. Plasmonic responses of the NHA platform, which is coated with Cu-benzenetricarboxylate metal organic framework
Christopher S. Yung, Nathan A. Tomlin, Cameron Straatsma, Joel Rutkowski, Erik Richard, Dave Harber, John H. Lehman, Michelle S. Stephens
Currently at NIST, there is an effort to develop a black array of broadband absolute radiometers (BABAR) for far infrared sensing. The linear array of radiometer elements is based on uncooled vanadium oxide (VOx) microbolometer pixel technology but with
Yuyin Song, Martin J. Burns, Abhinav Pandey, Thomas P. Roth
Cyber-physical systems (CPS) are smart systems that include engineered, interacting networks of physical and cyber components. The Institute of Electrical and Electronics Engineers (IEEE) 1451 defines a set of open, common, network-independent
Nicholas B. Guros, Son T. Le, Siyuan Zhang, Brent A. Sperling, Jeffery B. Klauda, Curt A. Richter, Arvind Balijepalli
We have developed an optimized process to realize high-performance field-effect transistor (FET) arrays from large-area 2D MoS2 films with an average yield of 85 %. A central element of the technique is a new exposed film forming gas anneal (EF- FGA) that
Sarah M. Robinson, Zuliang Shen, Jon R. Askim, Christopher B. Montgomery, Herman O. Sintim, Stephen Semancik
Development of technologies for rapidly screening the thermal stability of DNA secondary structures and the effects on stability for binding of small molecule drugs is important to the drug discovery process. In this report, we describe the capabilities of
Graphene and other 2D materials give a platform for electromechanical sensing of biomolecules in aqueous, room temperature environments. The electronic current changes in response to mechanical detection, indicating the presence of forces due to
Kelsey M. Morgan, Daniel T. Becker, Douglas A. Bennett, William B. Doriese, Johnathon D. Gard, K D. Irwin, Sang-Jun Lee, Dale Li, John A. Mates, Christine G. Pappas, Daniel R. Schmidt, Charles Titus, Daniel Van Winkle, Joel N. Ullom, Abigail L. Wessels, Daniel S. Swetz
We are designing an array of transition-edge sensor (TES) microcalorimeters for a soft X-ray spectrometer at the Linac Coherent Light Source at SLAC National Accelerator Laboratory to coincide with upgrades to the free electron laser facility. The complete
In the last two decades, the microfluidics/lab-on-a-chip field has evolved from the concept of micro total analysis systems, where systems with integrated pretreatment and analysis of chemicals were envisioned, to what is known today as lab-on-a-chip
Yuriy Suhak, Ward L. Johnson, Andrei Sotnikov, Hagen Schmidt, Holger Fritze
Transport mechanisms in structurally ordered piezoelectric Ca3TaGa3Si2O14 (CTGS) single crystals are studied in the temperature range of 1000-1300 °C by application of the isotope oxygen-18 as a tracer and subsequent analysis of oxygen-18 diffusion
Yangyang Zhao, Mona E. Zaghloul, Yigal Lilach, Kurt Benkstein, Stephen Semancik
We report a metal organic framework (MOF)-coated nanohole array based plasmonic gas sensor. Arrays of 200 nm circular holes are fabricated with a period of 400 nm. 10 nm thick MOF is coated on the sensor platform to provide high sensitivity and real-time
A recent study performed by the authors in [1] has shown that some electronic energy meters are susceptible to electromagnetic interference resulting in significant errors in the energy measurement. The authors have proposed that this interference is
Ivan Ryger, Aly Artusio-Glimpse, Paul A. Williams, Gordon A. Shaw, Matt Simons, Christopher L. Holloway, John H. Lehman
We demonstrate a compact electromagnetic power sensor based on force effects of electromagnetic radiation onto a highly reflective mirror surface. Unlike the conventional power measurement approach, the photons are not absorbed and can be further used in
Ivan Ryger, Alexandra B. Artusio-Glimpse, Paul A. Williams, Nathan A. Tomlin, Michelle S. Stephens, Matthew T. Spidell, Kyle A. Rogers, John H. Lehman
We introduce a micromachined force scale for laser power measurement by means of radiation pressure sensing. With this technique, the measured laser light is not absorbed and can be utilized while being measured. We employ silicon micromachining technology
A thin superconducting film in the transition between its superconducting and normal states makes an ultra-sensitive thermometer, capable of measuring the energy of individual x-ray and gamma ray photons. The transition edge sensor, like the
John M. Libert, John D. Grantham, Bruce Bandini, Stephen S. Wood, Michael D. Garris, Kenneth Ko, Frederick R. Byers, Craig I. Watson
This document details efforts undertaken by the National Institute of Standards and Technology (NIST) to develop measurements and a protocol for the evaluation of contactless (touchless) fingerprint acquisition devices. Contactless fingerprint capture
Yuyin Song, Gerald J. FitzPatrick, Kang B. Lee, Avi M. Gopstein, Paul A. Boynton
Interoperability testing provides a means for achieving and assuring smart sensor data interoperability. Interoperability testbeds can provide the technical foundations for standards development for smart sensors in smart grids, including standards for
Sang M. An, Jie Zou, Glenn Holland, Jungseok Chae, Andrea Centrone, Vladimir Aksyuk
We introduce an optomechanical transducer-based nanoscale cantilever for atomic force microscope (AFM). The high optical quality factor of the microdisk resonator enables detection of the nanoscale cantilever motion with high sensitivity. A low stiffness
John R. Jendzurski, Nicholas G. Paulter Jr., Michael Harner, Ram Narayanan
It is common practice to use a metal conducting sphere for radar calibration purposes. The aspect-independence of a sphere allows for a more accurate and repeatable calibration of a radar than using a nonspherical calibration artifact. In addition, the
We demonstrate the precision molecular spectroscopy of H13CN using a free-running, all-fiber dual electro-optic frequency comb system. Successive interferograms, acquired at a rate of Δfrep = 1 MHz, were phase-corrected in post-processing, averaged, and
The goal of this exploratory project is to demonstrate the feasibility of a conductometric measurement to determine the time-resolved soot deposition on surfaces in fire environments. Quantitative soot deposition data enabled by this measurement method is