Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.


The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Measurement Science for Service Life Prediction of Polymeric Components Used in Photovoltaic (PV) Systems


Due to intensified pricing pressure and rapid growth of photovoltaic (PV) technology, low cost and emerging polymeric materials are being used increasingly in module manufacturing. Because of their relatively recent deployment, little is known about their long-term performance and reliability. Furthermore, standards for quantitatively characterizing the performance and predicting the service lives of polymeric components used in PV systems are lacking, hindering innovation, implementation, and assurance of PV technologies. To address this problem, this project will develop, implement and deliver measurement science for accurate and timely assessment of the long-term performance and lifetime of polymeric components used in PV systems.  This project involves four major thrusts: (1) Advance analytical tools capable of providing crucial data for understanding degradation mechanisms and failure modes of PV polymeric components, laminates, and mini-modules, (2) Construct a state-of-the-art accelerated weathering laboratory device with multiple applied environmental stresses for testing PV components, laminates and mini-modules, (3) Develop validated reliability-based mathematical models for linking field and laboratory exposure results and predicting service lives of  PV components under different environmental conditions, and (4) Develop standards for testing, characterizing, and predicting service life of PV polymeric components.


Objective - To develop and implement measurement science for predicting and validating the lifetime of polymeric components utilized in photovoltaic applications.

What is the new technical idea?  
Over the past decade, the PV market has experienced unprecedented growth. [1-2]   According to the International Renewable Energy Agency report [3-4], solar energy installation exceeded the combined new capacity of coal, gas and nuclear power in 2017. This rapid deployment has come with new challenges regarding module reliability: 1) over 90% of global PV installations are less than 10 years old, and 2) there has been over a 90% reduction in module price in the past decade mainly due to the use of new materials and new technologies. These statistics mean that there is a lack of long-term historical data about module reliability, and even if such data were available, it may not be useful because new materials and components may perform differently than their more expensive predecessors. A literature review from NREL reported that the median rate of degradation for exposure up to 10 years was significantly higher than that of 10 years and longer. [5] A recent study on degradation rates of PV modules in hot-dry desert climates over a period of 12 years showed that about 50% of PV modules had degradation rates over 1 %/year. [6] Therefore, it is significantly important to study degradation and failure mechanisms, and develop measurement science to accurately predict the field performance of materials in modules, especially for new materials used in the emerging technologies without any historical field data (e.g., bifacial passivated emitter and rear contact (PERC) modules). 

The long-term reliability of a PV module is highly affected by the degradation behavior of the polymeric components within the module, such as the encapsulant and backsheet [7]. For example, corrosion, a major field failure mode leading to loss of power, is strongly accelerated by acetic acid, a product from degradation of encapsulant ethylene vinyl acetate (EVA). The cracking and delamination of the backsheet due to degradation can lead to the dielectric breakdown of PV systems and safety concerns as well as lower reliability of PV modules. However, current standardized test methods used for qualifying PV components and modules are only useful for detecting premature failures, and not for predicting service life or ensuring long-term reliability of products.  This is problematic because degradation of the PV modules can be non-linear through their lifetime [8]. Additionally, these tests do not apply the relevant environmental stressors simultaneously, therefore, the degradation modes from those tests may not be realistic.  

To address this problem, the new technical idea of this project is to develop and transfer measurement science to industry for evaluating and validating the lifetime of polymeric components in PV systems. In the previous phase of this project, we developed methods to expose, characterize, and predict the damage of PV materials and components based on the SPHERE technology and the reliability-based damage model. Due to the interdependent multi-stress effect, complex degradation mechanisms, and a high demand on the precise and accurate control of exposure weathering for service life prediction, there is a need to enhance the exposure capability, deepen the understanding, refine the tests, validate the prediction models, and continue developing the standards for service life prediction. This project consists of four major thrusts: (1) to advance analytical tools capable of providing crucial data for understanding degradation mechanisms and failure modes of PV polymeric components, laminates, and mini-modules, (2) to build up a state-of-the-art accelerated weathering laboratory chamber that applies multiple simultaneous environmental stresses for testing PV components, laminates, and mini-modules, (3) to develop reliability-based models for linking field and laboratory exposure results and predicting service lives of PV components under different environmental conditions, and (4) to develop and improve standards for testing, characterizing, and predicting service life of PV polymeric components.

What is the research plan?  
This project will continue to identify, measure, model, and integrate scientific knowledge of degradation and failure into the development of reliability-based accelerated test methods and service life prediction tools for polymeric components used in PV systems.  The research plan consists of the following component tasks:

  • Engage industry partners and develop research plans to effectively advance and transfer measurement science to stakeholders. NIST will engage industrial members for material selection, sample preparation, and failure identification, and will continually transfer the progress of measurement science in PV components to the PV industry in an effective, timely manner.
  • Design and fabricate a state-of-the-art accelerated test facility for PV components, laminates, and mini-modules. Currently no commercial weathering device can provide accurate, well-controlled simultaneous multiple environmental stresses suitable for accelerated testing of PV components and modules. A state-of-the-art integrating sphere-based weathering chamber for PV components testing will be designed and fabricated, functioning with highly uniform and intensive UV irradiance, well-controlled panel temperature, a wide-range of relative humidity, and simultaneous cyclic mechanical loadings. In addition, work will be done to facilitate the use of a commercial 6-port sphere for PV component testing.
  • Investigate the interdependent multi-stress effect on degradation mechanisms to facilitate modelling efforts.  A new experiment will be designed to study the effect of thermo-hydrolytic stress on backsheet cracking with both coupon samples and free-standing backsheets. New experiments will also include the study of the effect of encapsulant (ethylene vinyl acetate (EVA) vs. polyolefins) on  chemical, optical, and mechanical degradation of backsheets. The dependence of backsheet cracking on mechanical loading and acetic acid due to degradation of EVA encapsulant will be examined. 
  • Refine and apply the advanced analytical tools for characterizing the degradation of PV components under combined laboratory stresses and in field modules.  The protocols for non-destructive optical and chemical characterizations will be developed, including the measurements by UV-visible-near-IR spectroscopy, confocal Raman spectroscopy, and confocal fluorescence spectroscopy. Mechanical and morphological properties of PV components and laminates will also be characterized during exposure. Cross-sectional chemical, optical, morphological, and mechanical techniques will be further developed based on Raman spectroscopy, scanning electron microscopy, confocal fluorescence microscopy, and micro-FTIR for depth profiling and failure analysis of exposed laminated multicomponent coupons, mini-modules, and modules from the field. A novel test called a fragmentation test, which is a real-time monitoring technique to evaluate the crack propensity of backsheet will be developed with laser scanning confocal microscopy combined with in-situ small strain tensile tests. X-ray scattering-based techniques will be explored to study the changes in microstructure and the crack formation for aged backsheets under mechanical stress.  
  • Outdoor exposure will continue at outdoor sites in Florida, Arizona, and NIST Gaithersburg.  These sites will allow for chemical, optical, and mechanical measurements of backsheet and glass/encapsulant/backsheet laminates to better understand degradation in the field. The degradation mechanisms and failure modes will be compared with those exposed on the SPHERE, and the damage will be used to validate the service life prediction models developed based on accelerated laboratory exposure. 
  • Field survey of backsheet performance of NIST PV arrays. PV modules at the NIST Gaithersburg campus will be periodically examined to assess backsheet performance using non-destructive techniques, with the results being compared to degradation progression observed in an FY17 Q1 field survey. Work will be undertaken on irradiance measurement and view factor calculation to further quantify the impact of module mounting variables on backsheet degradation and module performance.
  • Validate mathematical models for predicting service life of PV components with outdoor exposure results.  The reliability-based methodology and cumulative damage models will be used to quantitatively link the critical properties of PV components from the accelerated laboratory exposure to those collected in the field. Mathematical models for describing the kinetics of physical and chemical degradation, linking laboratory and field exposure results, and predicting service life of PV components deployed in different climatic conditions will be established and validated.

    “PVPS 2019 Snapshot of Global PV Markets”,

2  RenewEconomy Daily Newsletter, March 21, 2014 (…). 



5  Jordan and Kurtz, “Photovoltaic Degradation Rates — An Analytical Review”. NREL/JA-5200-51664 (2012) (
6  Tamizh and Mani, “Degradation Rates, Safety Failures and Reliability Failures of Fielded PV 
   Modules: Lessons Learned in Hot-Dry Desert Climates”, 2nd Atlas/NIST PV Materials 
   Durability Workshop (2013) (

7  Kohl, et al, “Impact of Permeation Properties and Backsheet-Encapsulant Interactions on the 
   Reliability of PV Modules”, ISRN Renewable Energy, Vol. 2012, Article ID 459731 (2012)

8 Jordan, D. C., Silverman, T. J., Sekulic, B., and Kurtz, S. R. (2016) PV degradation curves: non-linearities and failure modes. Prog. Photovolt: Res. Appl., doi: 10.1002/pip.2835.

Created December 12, 2012, Updated November 7, 2019