Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Introduction to IEEE 1588

IEEE 1588
 

For further information, contact

Kang Lee

301 975 6604 Telephone
301 990 3851 Facsimile

100 Bureau Drive,
M/S 8223
Gaithersburg, MD
20899-8223

 

Measurement and control systems are widely used in traditional test and measurement, industrial automation, communication systems, electrical power systems and many other areas of modern technology. The timing requirements placed on these measurement and control systems are becoming increasingly stringent. Traditionally these measurement and control systems have been implemented in a centralized architecture in which the timing constraints are met by careful attention to programming combined with communication technologies with deterministic latency. In recent years an increasing number of such systems utilize a more distributed architecture and increasingly networking technologies having less stringent timing specifications than the older more specialized technologies. In particular Ethernet communications are becoming more common in measurement and control applications. This has led to alternate means for enforcing the timing requirements in such systems. One such technique is the use of system components that contain real-time clocks, all of which are synchronized to each other within the system. This is very common in the general computing industry. For example essentially all general purpose computers contain a clock. These clocks are used to manage distributed file systems, backup and recovery systems and many other similar activities. These computers typically interact via LANs and the Internet. In this environment the most widely used technique for synchronizing the clocks is the Network Time Protocol, NTP, or the related SNTP.

Measurement and control systems have a number of requirements that must be met by a clock synchronization technology. In particular:

  • Timing accuracies are often in the sub-microsecond range,
  • These technologies must be available on a range of networking technologies, including Ethernet, but also other technologies found in, for example, aerospace, industrial automation, power and utility, semiconductor manufacturing, telecommunication, test and measurement,
  • A minimum of administration is highly desirable,
  • The technology must be capable of implementation on low cost and low-end devices,
  • The required network and computing resources should be minimal.

In contrast to the general computing environment of intranets or the Internet, measurement and control systems typically are more spatially localized. 

IEEE 1588 addresses the clock synchronization requirements of measurement and control systems.

IEEE P1588 Working Group

Information about the IEEE P1588 Working Group” can be found at

https://sagroups.ieee.org/1588/

History of IEEE 1588

On March 31 - April 1, 1994, NIST held a Sensor Network Communications conference with representatives from industry, academia, and government. The conference concluded that commercial organizations would like to have a common network communication interface standard for sensors and actuators with synchronized clocks in devices typically used in measurement and control applications. As a consequence, a research and development effort on smart transducer interfaces for sensors and actuators pursued by Kang Lee and his team at NIST with collaboration from the private sectors have led to the development of the IEEE 1451 family of standards for distributed systems in industrial automation.

By November of 2000 there was sufficient interest in starting a standardization activity on clock synchronization to warrant forming a committee and seeking sponsorship. The initial committee met for the first time in April of 2001 and decided to seek sponsorship from the Institute of Electrical and Electronics Engineers (IEEE) Technical Committee on Sensor Technology of the Instrumentation and Measurement Society which had also sponsored, along with NIST, the IEEE 1451 activity. The committee membership included engineers from the automation, robotics, test and measurement, and time keeping industry as well as representatives from NIST and the military. The committee submitted a formal application to the IEEE which was approved on June 18, 2001.

The committee produced a draft of the standard which was submitted for ballot under the usual IEEE rules in April of 2002. This first ballot passed but there were a number of helpful comments submitted by the reviewing balloters. The committee incorporated these suggestions and resubmitted the standard for a second ballot which passed in May of 2002. The committee has submitted this final balloted version to the IEEE Standards Board Review Committee for final approval. The draft was approved as an IEEE standard by the review committee on September 12, 2002. The standard was published in November of 2002.

The IEEE 1588-2002 standard was later revised and became the IEEE 1588-2008 standard, many in industry refers to it as the IEEE 1588 version 2 standard.

Five years later, on June 14, 2013, a Project Authorization Request (PAR) was approved to revise the IEEE 1588-2008 standard to reflect the common needs of various industries for a new version of the IEEE 1588 standard that will meet the requirements of a more secure precision clock synchronization protocol that can work with both IPv4 and IPv6, and also suitable for higher speed applications in the sub-nanosecond range.

Additional information may be obtained from Kang Lee (kang.lee [at] ieee.org), Chair of the IEEE Technical Committee on Sensor Technology of the Instrumentation and Measurement Society, sponsor of IEEE 1588.

 

Created July 9, 2010, Updated January 26, 2021