Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by:

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 12 of 12

Ultra-broadband Kerr microcomb through soliton spectral translation

December 14, 2021
Author(s)
Gregory Moille, Edgar Perez, Jordan Stone, Ashutosh Rao, Xiyuan Lu, Tahmid Rahman, Yanne Chembo, Kartik Srinivasan
Broad bandwidth and stable microresonator frequency combs are critical for optical atomic clocks, optical frequency synthesis, dual comb spectroscopy, and a host of other applications that require accurate and precise optical frequency measurements in a

Towards integrated photonic interposers for processing octave-spanning microresonator frequency combs

May 26, 2021
Author(s)
Ashutosh Rao, Gregory Moille, Xiyuan Lu, Daron Westly, Davide Sacchetto, Michael Geiselmann, Michael Zervas, Scott Papp, John E. Bowers, Kartik Srinivasan
Microcombs - optical frequency combs generated in microresonators - have advanced tremendously in the last decade, and are advantageous for applications in frequency metrology, navigation, spectroscopy, telecommunications, and microwave photonics

Efficient photoinduced second-harmonic generation in silicon nitride photonics

November 2, 2020
Author(s)
Xiyuan Lu, Gregory Moille, Ashutosh Rao, Daron Westly, Kartik Srinivasan
Silicon photonics lacks a second-order nonlinear optical (chi(2)) response in general because the typical constituent materials are centro-symmetric and lack inversion symmetry, which prohibits chi(2) nonlinear processes such as second harmonic generation

Dissipative Kerr Solitons in a III-V Microresonator

June 22, 2020
Author(s)
Gregory T. Moille, Lin Chang, Weiqiang Xie, Ashutosh S. Rao, Xiyuan Lu, Marcelo I. Davanco, John E. Bowers, Kartik A. Srinivasan
We demonstrate stable microresonator Kerr solitons in a III-V platform through cryogenic quenching of the thermorefractive effect. Such phase-stable operation is critical to fully exploit the high nonlinearity and low loss available in this platform.

Milliwatt-threshold visible-telecom optical parametric oscillation using silicon nanophotonics

December 20, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Anshuman Singh, Qing Li, Daron Westly, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The on-chip creation of coherent light at visible wavelengths is of interest to many applications in spectroscopy, sensing, and metrology. Towards that goal, here we propose and demonstrate the first on-chip visible-telecom optical parameteric oscillator

Broadband Resonator-Waveguide Coupling for Efficient Extraction of Octave Spanning Microcombs

October 1, 2019
Author(s)
Gregory Moille, Qing Li, Travis Briles, Su P. Yu, Tara E. Drake, Xiyuan Lu, Ashutosh Rao, Daron Westly, Scott Papp, Kartik Srinivasan
Frequency combs spanning over an octave have been successfully demonstrated on-chip in Kerr nonlinear microresonators, thanks to their large effective nonlinearity and ability to support a suitable dispersion profile. Efficient extraction of intracavity

Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures

September 27, 2019
Author(s)
Gregory Moille, Xiyuan Lu, Ashutosh Rao, Qing Li, Daron Westly, Leonardo Ranzani, Scott Papp, Mohammad Soltani, Kartik Srinivasan
We present measurements of silicon nitride nonlinear microresonators and frequency comb generation at cryogenic temperatures as low as 7 K. A resulting two orders of magnitude reduction in the thermo-refractive coefficient relative to room-temperature

Efficient telecom-to-visible spectral translation through ultra-low power nonlinear nanophotonics

June 24, 2019
Author(s)
Xiyuan Lu, Gregory Moille, Qing Li, Daron Westly, Anshuman Singh, Ashutosh Rao, Su P. Yu, Travis Briles, Scott Papp, Kartik Srinivasan
The ability to spectrally translate lightwave signals in a compact, low-power platform is at the heart of the promise of nonlinear nanophotonic technologies. For example, a device to connect the telecommunications band with visible and short near-infrared