Skip to main content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Search Publications by Xiyuan Lu

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 8 of 8

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

Author(s)
Qing Li, Anshuman Singh, Xiyuan Lu, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kartik A. Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of

Kerr Microresonator Soliton Frequency Combs at Cryogenic Temperatures

Author(s)
Gregory T. Moille, Xiyuan Lu, Ashutosh S. Rao, Qing Li, Daron A. Westly, Leonardo Ranzani, Scott B. Papp, Mohammad Soltani, Kartik A. Srinivasan
We present measurements of silicon nitride nonlinear microresonators and frequency comb generation at cryogenic temperatures as low as 7 K. A resulting two

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

Author(s)
Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Jin Liu, Kartik A. Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their