Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Paul Salipante (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 41

Interplay of actin nematodynamics and anisotropic tension controls endothelial mechanics

April 18, 2025
Author(s)
Claire Dessalles, Nicolas Cuny, Arthur Boutillon, Paul Salipante, Avin Babataheri, Abdul Barakat, Guillaume Salbreux
Blood vessels expand and contract actively, while continuously experiencing dynamic external stresses from the blood flow. The mechanical response of the vessel wall is that of a composite material: its mechanical properties depend on its cellular

Rheology and Microstructural Behavior of Semidilute Suspensions of Semiflexible Rods across Five Decades of Shear Rate

February 18, 2025
Author(s)
Paul Salipante, Ryan Murphy, Steve Kuei, Jeffrey Fagan, Christopher Sims, Kathleen Weigandt, Steven Hudson
Rod-like particles are efficient rheology modifiers and are commonly found in a variety of biological and industrially relevant suspensions, from biofilaments to worm-like surfactant micelles. These suspensions display strong shear-thinning behavior, and

Glucocorticoids Alter Bone Microvascular Barrier via MAPK/Connexin43 Mechanisms

January 20, 2025
Author(s)
Eun Jin Lee, Peter Lialios, Micaila Curtis, James Williams IV, Yoontae Kim, Paul Salipante, Steven Hudson, Mandy Esch, moshe levi, Joanna Kitlinska, Stella Alimperti
Glucocorticoids (GCs) are standard-of-care treatments for inflammatory and immune disorders, and their long-term use increases the risk of osteoporosis. Although GCs decrease bone functionality, their role in bone microvasculature is incompletely

Two-fluid model for nonlinear flow of wormlike micelle solutions. I: Model

November 1, 2024
Author(s)
Paul Salipante, Michael Cromer, Steven D. Hudson
We develop a rheological model to approximate the nonlinear rheology of wormlike micelles using two constitutive models to represent a structural transition at high shear rates. The model is intended to describe the behavior of semidilute wormlike micellar

Two-fluid model for nonlinear flow of wormlike micelle solutions. II: Experiment

November 1, 2024
Author(s)
Paul Salipante, Michael Cromer, Steven D. Hudson
Applications often expose wormlike micelle solutions to a very wide range of shear and temperature conditions. The two-species model presented in Part I [Salipante et al., J. Rheol. 68 (2024)] describes the nonlinear rheology over a wide range of shear

Flow Activation Energy of High-Concentration Monoclonal Antibody Solutions and Protein-Protein Interactions Influenced by NaCl and Sucrose

August 20, 2024
Author(s)
Guangcui Yuan, Paul Salipante, Steven D. Hudson, Richard Gillilan, Qingqiu Huang, Harold Hatch, Vincent Shen, Alexander Grishaev, Suzette Pabit, Rahul Upadhya, Sudeep Adhikari, Jainik Panchal, Marco Blanco, Yun Liu
The solution viscosity and protein−protein interactions (PPIs) as a function of temperature (4−40 °C) were measured at a series of protein concentrations for a monoclonal antibody (mAb) with different formulation conditions, which include NaCl and sucrose

In Situ Lignin Adhesion for High-Performance Bamboo Composites

September 7, 2023
Author(s)
Taotao Meng, Yu Ding, Yu Liu, Lin Xu, Yimin Mao, Julia Gelfond, Shuke Li, Zhihan Li, Paul Salipante, Hoon Kim, J. Zhu, Xuejun Pan, Liangbing Hu
Bamboo composite is an attractive candidate for structural materials in applications such as construction, the automotive industry, and logistics. However, its development has been hindered due to the use of harmful petroleum-derived synthetic adhesives or

Mechanical Regulation of Oral Epithelial Barrier Function

April 25, 2023
Author(s)
Eun Jin Lee, Paul Salipante, Anthony Kotula, Dana Graves, Stella Alimperti, Yoontae Kim
Epithelial cell function is modulated by mechanical forces imparted by the extracellular environment. The transmission of forces onto the cytoskeleton by modalities such as mechanical stress and matrix stiffness is necessary to address by the development

Microfluidic techniques for mechanical measurements of biological samples

January 20, 2023
Author(s)
Paul Salipante
The use of microfluidics to make mechanical property measurements is increasingly common. Fabrication of microfluidic devices has enabled various types of flow control and sensor integration at micrometer length scales to interrogate biological materials

A small-volume microcapillary rheometer

March 30, 2022
Author(s)
Paul Salipante, Steve Kuei, Steven Hudson
We demonstrate a capillary device used to measure the shear rate dependent viscosity of microliter scale volumes. Liquid samples are driven pneumatically to fill a microcapillary and partially fill a larger glass capillary. The glass capillary is mounted

Blood vessel-on-a-chip examines biomechanics of microvasculature

November 15, 2021
Author(s)
Paul Salipante, Steven D. Hudson, Styliani Alimperti
We use a three-dimensional (3D) microvascular platform to measure the elasticity and membrane permeability of the endothelial cell layer. The microfluidic platform is connected with a pneumatic pressure controller to apply hydrostatic pressure. The

Capillary RheoSANS: Measuring the Rheology and Nanostructure of Complex Fluids at High Shear Rates

July 15, 2020
Author(s)
Ryan P Murphy, Zachary W. Riedel, Marshall A. Nakatani, Paul Salipante, Javen S. Weston, Steven D. Hudson, Kathleen M Weigandt
Complex fluids containing micelles, proteins, polymers and inorganic nanoparticles are often processed and used in high shear environments that can lead to structural changes at the nanoscale. Here, capillary rheometery is combined with small-angle neutron

Flow Resistance & Structures in Viscoelastic Channel Flows at Low Re

November 5, 2019
Author(s)
Boyang Qin, Paul Salipante, Steven Hudson, Paulo E. Arratia
The flow of viscoelastic fluids in channels and pipes remain poorly understood, particularly at low Reynolds numbers. Here, we investigate the flow of polymeric solutions in straight channels using pressure measurements and particle tracking. The law of