Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Capillary RheoSANS: Measuring the Rheology and Nanostructure of Complex Fluids at High Shear Rates

Published

Author(s)

Ryan P Murphy, Zachary W. Riedel, Marshall A. Nakatani, Paul Salipante, Javen S. Weston, Steven D. Hudson, Kathleen M Weigandt

Abstract

Complex fluids containing micelles, proteins, polymers and inorganic nanoparticles are often processed and used in high shear environments that can lead to structural changes at the nanoscale. Here, capillary rheometery is combined with small-angle neutron scattering (SANS) to simultaneously measure the viscosity and nanostructure of model complex fluids at industrially-relevant high shear rates. Capillary RheoSANS (CRSANS) uses pressure-driven flow through a long, flexible, silica capillary to generate wall shear rates up to 106s-1 and measure pressure drops up to 500 bar. Sample volumes as small as 2 mL are required, which allow for measurement of supply-limited biological and deuterated materials. The device design, rheology and scattering measurement methodologies, and broad sample capabilities are demonstrated by measuring a variety of model systems including silica nanoparticles, NIST monoclonal antibodies, and surfactant worm-like micelles. For a shear-thinning suspension of worm-like micelles, CRSANS measurements are in good agreement with traditional RheoSANS measurements. Collectively, these techniques provide insight into relationships between nanostructure and steady-shear viscosity over eight orders of magnitude in shear rate. Overall, CRSANS expands the capabilities of traditional RheoSANS instruments toward higher shear rates, enabling in situ nanostructural measurements of soft materials at shear rates relevant to extrusion, coating, lubrication, and spraying applications.
Citation
Soft Matter
Volume
16
Issue
27

Keywords

complex fluids, rheology, neutron scattering, structure

Citation

, R. , , Z. , , M. , Salipante, P. , , J. , Hudson, S. and , K. (2020), Capillary RheoSANS: Measuring the Rheology and Nanostructure of Complex Fluids at High Shear Rates, Soft Matter, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=930405 (Accessed April 18, 2024)
Created July 14, 2020, Updated September 3, 2020