Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Fabrizio Giorgetta (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 81

Open-path measurement of stable water isotopologues using mid-infrared dual-comb spectroscopy

September 8, 2023
Author(s)
Daniel Herman, Griffin Mead, Fabrizio Giorgetta, Esther Baumann, Nathan Malarich, Brian Washburn, Nathan R. Newbury, Ian Coddington, Kevin Cossel
We present an open-path mid-infrared dual-comb spectrometer (DCS) capable of precise measurement of the stable water isotopologues H216O and HD16O. This system runs in a remote configuration at a rural test site with high uptime and achieves a precision of

Dual-Comb Spectroscopy of Carbon Dioxide and Methane Across a 14.5 km Long Outdoor Path

September 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, Jean-Daniel Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
Greenhouse-gas dual-comb spectroscopy is extended to a city-scale 14.5-km path length using remote receiver and data acquisition. This configuration enables lower link losses and longer path lengths compared to folded paths with a remote retroreflector

MODELLING AND REMOVING DIGITIZER NONLINEARITY FOR ACCURATE DUAL FREQUENCY COMB SPECTROSCOPY

August 15, 2023
Author(s)
Nathan Malarich, Kevin Cossel, JEAN-DANIEL DESCHENES, Fabrizio Giorgetta, Brian Washburn, Nathan Newbury, Ian Coddington, Jerome Genest
Operation of any dual-comb spectrometer requires digitization of the interference signal before further processing. Nonlinearities in the analog-to-digital conversion can alter the apparent gas concentration by multiple percent, limiting both precision and

Extending Dual-Comb Spectroscopy Path Length to 14.5 km by Separating Receiver from Transmitter

June 1, 2023
Author(s)
Fabrizio Giorgetta, Esther Baumann, Brian Washburn, Nathan Malarich, J.-D. Deschenes, Ian Coddington, Nathan Newbury, Kevin Cossel
We present dual-comb spectroscopy across a 14.5-km path using remote receiver and data acquisition. This configuration results in lower link losses compared to open-path configurations with co-located transmitter and receiver.

Validation of open-path dual-comb spectroscopy against an O2 background

January 30, 2023
Author(s)
Nathan Malarich, Brian Washburn, Kevin Cossel, Fabrizio Giorgetta, Griffin Mead, Daniel Herman, Nathan R. Newbury, Ian Coddington
Dual-comb spectroscopy measures greenhouse gas concentrations over kilometer-length open-air paths with high precision. However, characterizing the absolute accuracy of these outdoor measurements is challenging, as most gas species have fluctuating

A compact mid-infrared dual-comb spectrometer for outdoor spectroscopy

April 9, 2022
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Jacob T. Friedlein, Daniel Herman, Kevin Cossel, Esther Baumann, Nathan R. Newbury, Ian Coddington
This manuscript describes the design of a robust, mode-locked laser based, mid-infrared dual- comb spectrometer operating in the 3.1-µm to 4-µm spectral window. The design represents an improvement in signal-to-noise, system size, power consumption and

Remote sensing using open-path dual-comb spectroscopy

January 1, 2021
Author(s)
Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Fabrizio Giorgetta, Brian Washburn, Caroline Alden, Sean Coburn
Open-path dual-comb spectroscopy (DCS) is an emerging technique for long open-path measurements across km-scale paths. It provides both broad spectral coverage over hundreds of wavenumbers with high spectral resolution and negligible instrument lineshape

Dual-comb photoacoustic spectroscopy

June 19, 2020
Author(s)
Jacob T. Friedlein, Esther Baumann, Kimberly Briggman, Gabriel M. Colacion, Fabrizio R. Giorgetta, Daniel I. Herman, Nathan R. Newbury, Jeeseong Hwang, Ian R. Coddington, Kevin C. Cossel, Gabriel Ycas, Christopher Yung, Eli V. Hoenig, Edgar F. Perez, Aaron Goldfain
Spectrally-resolved photoacoustic imaging is a promising technique for label-free imaging in optically scattering materials. However, this technique often requires acquisition of a separate image at each wavelength of interest. This reduces imaging speeds

Mid-Infrared Dual Frequency Comb Spectroscopy for Combustion Analysisin the 2.8 to 5 micron Spectral Region

June 7, 2020
Author(s)
Ian Coddington, Nathan R. Newbury, Greg Rieker, Amanda S. Makowiecki, Daniel Herman, Nazanin Hoghooghi, Elizabeth F. Strong, Gabriel Ycas, Fabrizio Giorgetta, Ryan Cole, Caelan Lapointe, Jeff Glusman, John Daily, Peter E. Hamlington
We demonstrate the application of mode-locked mid-infrared dual frequency comb spectroscopy for combustion analysis. With two settings of the same dual-comb system, the measurement spans 1500 cm-1 (2.8 to 5 microns) with 0.0067 cm-1 (200 MHz) point spacing

Dual comb spectroscopy with tailored spectral broadening in nanophotonic Si3N4

April 15, 2019
Author(s)
Esther Baumann, Edgar Perez, Gabriel M. Colacion, Fabrizio Giorgetta, Kevin Cossel, Gabriel Ycas, David Carlson, Kartik Srinivasan, Scott Papp, Ian Coddington, Nathan R. Newbury
Spectral broadening of compact robust Er+: fiber combs is demonstrated with tailored Si3N4 waveguides to obtain spectrally-smooth broadened light in the 2 μm 2.5 μm atmospheric water window for gas spectroscopy. This successfully extends the Er+ spectrum

Mid-infrared dual-comb spectroscopy of volatile organic compounds across long open-air paths

February 5, 2019
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Kevin Cossel, Eleanor M. Waxman, Esther Baumann, Nathan R. Newbury, Ian Coddington
Open-path measurements of atmospheric gas species in the air, including volatile organic compounds, are essential to quantify emissions from sources like oil and gas, forest fires, and industry. Here, we extend open-path dual-comb spectroscopy to probe the

Real-time liquid-phase organic reaction monitoring with a mid-infrared dual frequency comb spectrometer

January 10, 2019
Author(s)
Daniel I. Herman, Eleanor M. Waxman, Gabriel G. Ycas, Fabrizio R. Giorgetta, Nathan R. Newbury, Ian R. Coddington
We combine high-resolution mid-infrared dual-comb spectroscopy with attenuated total reflectance measurements to provide in-situ monitoring of a chemical reaction. The mid-infrared dual-comb spectrometer measures quantitative absorption cross-sections of

Open-path dual-comb spectroscopy to an airborne retroreflector

July 20, 2017
Author(s)
Kevin C. Cossel, Eleanor M. Waxman, Fabrizio R. Giorgetta, Michael A. Cermak, Dan Hesselius, Shalom Ruben, William C. Swann, Gregory B. Rieker, Nathan R. Newbury
We demonstrate a new technique for spatial mapping of multiple atmospheric gas species. This system is based on high-precision dual-comb spectroscopy to a retroreflector mounted on a flying multicopter. We measure the atmospheric absorption over long open

Synchronization of clocks through 12km of strongly turbulent air over a city

October 11, 2016
Author(s)
Laura C. Sinclair, William C. Swann, Hugo Bergeron, Esther Baumann, Michael A. Cermak, Ian R. Coddington, Jean-Daniel Deschenes, Fabrizio R. Giorgetta, Juan Juarez, Isaac H. Khader, Keith G. Petrillo, Katherine T. Souza, Michael L. Dennis, Nathan R. Newbury
We demonstrate real-time, femtosecond-level clock synchronization across a low-lying, strongly turbulent, 12-km horizontal air path by optical two-way time transfer. For this long horizontal free-space path, the integrated turbulence extends well into the

Tight real-time synchronization of a microwave clock to an optical clock across a turbulent air path

April 15, 2016
Author(s)
Hugo Bergeron, Laura C. Sinclair, William C. Swann, Craig Nelson, Jean-Daniel Deschenes, Esther Baumann, Fabrizio R. Giorgetta, Ian R. Coddington, Nathan R. Newbury
The ability to distribute the precise time and frequency from an optical clock to remote platforms could enable future precise navigation and sensing systems. Here we demonstrate tight, real-time synchronization of a remote microwave clock to a master

Optical system design for femtosecond-level synchronization of clocks

February 13, 2016
Author(s)
Laura C. Sinclair, William C. Swann, Jean-Daniel Deschenes, Hugo Bergeron, Fabrizio R. Giorgetta, Esther Baumann, Michael A. Cermak, Ian R. Coddington, Nathan R. Newbury
Synchronization of optical clocks via optical two-way time-frequency transfer across free-space links can result in time offsets between the two clocks below tens of femtoseconds over many hours. The complex optical system necessary to support such