Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Tara Fortier (Fed)

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 76 - 100 of 178

A hybrid 10 GHz photonic-microwave oscillator with sub-femtosecond absolute timing jitter

May 24, 2012
Author(s)
Tara M. Fortier, Craig W. Nelson, Archita Hati, Franklyn J. Quinlan, Jennifer A. Taylor, Haifeng (. Jiang, Chin-Wen Chou, Nathan D. Lemke, Andrew D. Ludlow, David A. Howe, Christopher W. Oates, Scott A. Diddams
We demonstrate a 10 GHz hybrid oscillator comprised of a phase stabilized optical frequency comb divider and a room temperature dielectric sapphire oscillator. Characterization of the 10 GHz microwave signal via comparison of two independent hybrid

Ultra-low-noise Regenerative Frequency Divider for High Spectral Purity RF Signal Generation

May 24, 2012
Author(s)
Archita Hati, Craig W. Nelson, Corey A. Barnes, Danielle G. Lirette, Jason A. DeSalvo, Tara M. Fortier, Franklyn J. Quinlan, Andrew D. Ludlow, Till P. Rosenband, Scott A. Diddams, David A. Howe
We implement an ultra-low-noise frequency divider chain from 8 GHz to 5 MHz that utilizes custom-built regenerative frequency divide-by-2 circuits. The single-sideband (SSB) residual phase noise of this regenerative divider at 5 MHz output is -163 dBc/Hz

Noise floor reduction of an Er:fiber laser-based photonic microwave generator

December 1, 2011
Author(s)
Haifeng (. Jiang, Jennifer A. Taylor, Franklyn J. Quinlan, Tara M. Fortier, Scott A. Diddams
Commercially available erbium-doped mode-locked fiber lasers are compact, robust, and suitable to be the frequency divider of an ultra-low phase noise photonic microwave generator. However, for a mode-locked fiber laser with repetition rate of a few

Frequency-stabilization to 6x10 -16 via spectral-hole burning

September 11, 2011
Author(s)
Michael J. Thorpe, Tara M. Fortier, Matthew S. Kirchner, Till P. Rosenband, Lars Rippe
We demonstrate two-stage laser stabilization based on a combination of Fabry-Pérot and spectral-hole burning techniques. The laser is first pre-stabilized by the Fabry-Pérot cavity to a fractional-frequency stability of ς y(τ) -13. A pattern of spectral

Ultralow phase noise microwave generation with an Er:fiber-based optical frequency divider

August 15, 2011
Author(s)
Franklyn J. Quinlan, Tara M. Fortier, Matthew S. Kirchner, Jennifer A. Taylor, Michael J. Thorpe, Nathan D. Lemke, Andrew D. Ludlow, Yanyi Jiang, Christopher W. Oates, Scott A. Diddams
We present an optical frequency divider based on a 200 MHz repetition rate Er:fiber mode-locked laser that, when locked to a stable optical frequency reference, generates microwave signals with absolute phase noise that is equal to or better than cryogenic

Generation of Ultrastable microwaves via optical frequency division

June 26, 2011
Author(s)
Tara Fortier, Matthew S. Kirchner, Jennifer A. Taylor, James C. Bergquist, Yanyi Jiang, Andrew Ludlow, Christopher W. Oates, Till P. Rosenband, Scott Diddams, Franklyn Quinlan, Nathan D. Lemke
A frequency-stabilized femtosecond laser optical frequency comb serves as a source of microwave signals having very low close-to-carrier phase noise. Comparison of two independent systems shows combined absolute phase noise of -100 dBc/Hz at an offset of 1

Optical frequency stabilization of a 10 GHz Ti:sapphire frequency comb by saturated absorption spectroscopy in 87Rubidium

November 4, 2009
Author(s)
Dirk Heinecke, Albrecht Bartels, Tara M. Fortier, Danielle Braje, Leo Hollberg, Scott A. Diddams
The high power per mode of a recently-developed 10 GHz femtosecond Ti:sapphire frequency comb permits nonlinear Doppler-free saturation spectroscopy in 87Rubidium with a single mode of the comb. We use this access to the natural linewidth of the Rubidium

A Spin-1/2 Optical Lattice Clock

August 7, 2009
Author(s)
Nathan D. Lemke, Andrew D. Ludlow, Zeb Barber, Tara M. Fortier, Scott A. Diddams, Yanyi Jiang, Steven R. Jefferts, Thomas P. Heavner, Thomas E. Parker, Christopher W. Oates
We experimentally investigate an optical clock based on 171Yb (I = 1/2) atoms confined in an optical lattice. We have evaluated all known frequency shifts to the clock transition, including the density-dependent collision shift, with an uncertainty of 0.19

Frequency Measurements of Al+ and Hg+ Optical Standards

June 8, 2009
Author(s)
Wayne M. Itano, James C. Bergquist, Till P. Rosenband, David J. Wineland, David Hume, Chin-wen Chou, Steven R. Jefferts, Thomas P. Heavner, Tom Parker, Scott Diddams, Tara Fortier
Frequency standards based on narrow optical transitions in 27Al+ and 199Hg+ ions have been developed at NIST. Both standards have absolute reproducibilities of a few parts in 10 17. This is about an order of magnitude better than the fractional uncertainty

Probing interactions between ultracold fermions

April 17, 2009
Author(s)
G K. Campbell, M M. Boyd, J W. Thomsen, M J. Martin, S Blatt, M D. Swallows, Travis L. Nicholson, Tara Fortier, Christopher W. Oates, Scott Diddams, Nathan D. Lemke, Pascal Naidon, Paul S. Julienne, Jun Ye, Andrew Ludlow
At ultracold temperatures, the Pauli exclusion principle suppresses collisions between identical fermions. This has motivated the development of atomic clocks using fermionic isotopes. However, by probing an optical clock transition with thousands of

Generation of 20 GHz, sub-40 fs pulses at 960 nm via repetition rate multiplication

April 1, 2009
Author(s)
Matthew S. Kirchner, Danielle Braje, Tara M. Fortier, A.M. Weiner, Leo Hollberg, Scott A. Diddams
Optical filtering of a stabilized 1 GHz optical frequency comb produces a 20 GHz comb with ~40 nm bandwidth (FWHM) at 960 nm. Using a low finesse Fabry-Perot cavity in a double pass configuration provides a broad cavity coupling bandwidth (delta lambda