Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by Sae Woo Nam

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 1 - 25 of 271

Quantum circuits with many photons on a programmable nanophotonic chip

Adriana Lita, Sae Woo Nam, Thomas Gerrits, J. M. Arrazola, V. Bergholm, K Bradler, T R. Bromley, M J. Collins, I Dhand, A Fumagalli, A Goussev, L G. Helt, J Hundal, T Isacsson, R B. Israel, N Quesada, V D. Vaidya, Z Vernon, Y Zhang
Growing interest in quantum computing for practical applications has led to a surge in the availability of programmable machines for loading and executing

Calibration of free-space and fiber-coupled single-photon detectors

Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Oliver T. Slattery, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We present our measurements of the detection efficiency of free-space and fiber-coupled single- photon detectors at wavelengths near 851 nm and 1533.6 nm. We

Microring resonator-coupled photoluminescence from silicon W centers

Alexander N. Tait, Sonia M. Buckley, Jeffrey T. Chiles, Adam N. McCaughan, Sae Woo Nam, Richard P. Mirin, Jeffrey M. Shainline
Defect centers are promising candidates for waveguide-integrated silicon light sources. We demonstrate microresonator- and waveguide-coupled photoluminescence

Superconducting microwire detectors with single-photon sensitivity in the near-infrared

Jeffrey T. Chiles, Sonia M. Buckley, Adriana E. Lita, Varun B. Verma, Jeffrey M. Shainline, Richard P. Mirin, Sae Woo Nam, Jason Allmaras, Boris Korzh, Emma Wollman, Matthew Shaw
We report on the fabrication and characterization of single-photon-sensitive WSi superconducting detectors with wire widths from 1 υm to 3 υm. The devices

Quantum-enhanced interferometry with large heralded photon-number states

G Thekkadath, M.E. Mycroft, B.A. Bell, C.G. Wade, A. Eckstein, David Phillips, R.B Patel, A. Buraczewski, Adriana Lita, Thomas Gerrits, Sae Woo Nam, M. Stobinska, A.I. Lvovsky, Ian Walmsley
Quantum phenomena such as entanglement can improve fundamental limits on the sensitivity of a measurement probe. In optical interferometry, a probe consisting

Experimental Low-Latency Device-Independent Quantum Randomness

Yanbao Zhang, Lynden K. Shalm, Joshua C. Bienfang, Martin J. Stevens, Michael D. Mazurek, Sae Woo Nam, Carlos Abellan, Waldimar Amaya, Morgan Mitchell, Honghao Fu, Carl A. Miller, Alan Mink, Emanuel H. Knill
Applications of randomness such as private key generation and public randomness beacons require small blocks of certified random bits on demand. Device

Calibration of free-space and fiber-coupled single-photon detectors

Thomas Gerrits, Alan L. Migdall, Joshua C. Bienfang, John H. Lehman, Sae Woo Nam, Jolene D. Splett, Igor Vayshenker, Chih-Ming Wang
We measure the detection efficiency of single-photon detectors at wavelengths near 851 nm and 1533.6 nm. We investigate the spatial uniformity of one free-space

Tunable quantum beat of single photons enabled by nonlinear nanophotonics

Qing Li, Anshuman Singh, Xiyuan Lu, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Kartik A. Srinivasan
Integrated photonics is a promising approach for scalable implementation of diverse quantum resources at the chip-scale. Here, we demonstrate the integration of

Nonlinear Silicon waveguides produce tunable frequency combs spanning 2.0-8.5 ?m

Nima Nader, Abijith S. Kowligy, Jeffrey T. Chiles, Eric J. Stanton, Henry R. Timmers, Alexander J. Lind, Kimberly Briggman, Scott Diddams, Flavio Caldas da Cruz, Richard Mirin, Sae Woo Nam, Daniel M. Lesko
We present fully air clad suspended-silicon waveguides for efficient nonlinear interactions limited only by the silicon transparency. Novel fork-shaped couplers

Quantum interference enables constant-time quantum information processing

Thomas Gerrits, Sae Woo Nam, Adriana E. Lita, M. Stobinska, A. Buraczewski, M. Moore, W.R. Clements, J.J. Renema, W.S. Kolthammer, A. Eckstein, I.A. Walmsley
It is an open question how fast information processing can be performed and whether quantum effects can speed up the best existing solutions. Signal extraction

Quantum Frequency Conversion of a Quantum Dot Single-Photon Source on a Nanophotonic Chip

Anshuman Singh, Qing Li, Shunfa Liu, Ying Yu, Xiyuan Lu, Christian Schneider, Sven Hofling, John R. Lawall, Varun B. Verma, Richard P. Mirin, Sae Woo Nam, Jin Liu, Kartik A. Srinivasan
Single self-assembled InAs/GaAs quantum dots are promising bright sources of indistinguishable photons for quantum information science. However, their

Towards a source of entangled photon pairs in gallium phosphide

Paulina S. Kuo, Peter G. Schunemann, Mackenzie Van Camp, Varun B. Verma, Thomas Gerrits, Sae Woo Nam, Richard P. Mirin
We investigate parametric down-conversion in orientation-patterned GaP. Pumped at 865 nm, the signal and idler are at 1350 nm and 2400 nm, respectively.

Integrated transition edge sensors on lithium niobate waveguides

Thomas Gerrits, Adriana E. Lita, Richard P. Mirin, Sae Woo Nam, Jan P. Hoepker, Stephan Krapick, Harald Herrmann, Raimund Ricken, Victor Quiring, Christine Silberhorn, Tim J. Bartley
We show the proof-of-principle detection of light at 1550 nm coupled evanescently from a lithium niobate waveguide to a superconducting transition edge sensor

Indistinguishable single-mode photons from spectrally engineered biphotons

Thomas Gerrits, Adriana E. Lita, Sae Woo Nam, Changchen Chen, Jane Heyes, Kyung-Han Hong, Jeffrey Shapiro, Franco N. Wong
We use pulsed spontaneous parametric down-conversion in KTiOPO4, with a Gaussian phasematching function and a transform-limited Gaussian pump, to achieve near