Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications by: Erik L. Johnsson ()

Search Title, Abstract, Conference, Citation, Keyword or Author
Displaying 26 - 50 of 61

Free Space Optics Communication System Testing in Smoke and Fire Environments

April 1, 2006
Author(s)
Alexander Maranghides, William E. Mell, William D. Walton, Erik L. Johnsson, Nelson P. Bryner
Free-Space Optics (also known as FSO , or Optical Wireless ) can be used to transmit optical data, voice and video information. These laser-based systems require unobstructed line of sight to properly operate. FSO system performance, signal intensity and

Report of Experimental Results for the International Fire Model Benchmarking and Validation Exercise #3.

December 1, 2005
Author(s)
Anthony P. Hamins, Alexander Maranghides, Erik L. Johnsson, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland, Robert Anleitner
The Nuclear Regulatory Commission (NRC) and the National Institute of Standards and Technology (NIST) are participating in an International Collaborative Fire Model Project (ICFMP) to assess and validate fire computer codes for nuclear power plant

Energy Balance in a Large Compartment Fire. (POSTER ABSTRACTS)

September 18, 2005
Author(s)
Anthony P. Hamins, Erik L. Johnsson, Michelle K. Donnelly
The experiments described here were part of an international collaborative project to assess and validate fire computer codes for nuclear power plant applications. Understanding the distribution of energy released by a fire is important for testing the

Experiments and Modeling of Structural Steel Elements Exposed to a Fire. Federal Building and Fire Safety Investigation of the World Trade Center Disaster (NIST NCSTAR 1-5B) ***DRAFT for Public Comments***

September 1, 2005
Author(s)
Anthony P. Hamins, Alexander Maranghides, Kevin B. McGrattan, Erik L. Johnsson, Thomas J. Ohlemiller, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland, Kuldeep R. Prasad, S R. Kukuck, Robert Anleitner, Therese P. McAllister
Reconstructing the fires and their impact on structural components in the World Trade Center (WTC) buildings on September 11, 2001, requires extensive use of computational models. For the use of such models to be a viable investigative tool, it is

Experiments and Modeling of Structural Steel Elements Exposed to Fire (Appendices D-G). Federal Building and Fire Safety Investigation of the World Trade Center Disaster (NIST NCSTAR 1-5B)

September 1, 2005
Author(s)
Anthony P. Hamins, Alexander Maranghides, Kevin B. McGrattan, Erik L. Johnsson, Thomas J. Ohlemiller, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland, Kuldeep R. Prasad, S R. Kukuck, Robert Anleitner, Therese P. McAllister
Reconstructing the fires and their impact on structural components in the World Trade Center (WTC) buildings on September 11, 2001, requires extensive use of computational models. For the use of such models to be a viable investigative tool, it is

Experiments and Modeling of Structural Steel Elements Exposed to Fire. Federal Building and Fire Safety Investigation of the World Trade Center Disaster (NIST NCSTAR 1-5B)

September 1, 2005
Author(s)
Anthony P. Hamins, Alexander Maranghides, Kevin B. McGrattan, Erik L. Johnsson, Thomas J. Ohlemiller, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland, Kuldeep R. Prasad, S R. Kukuck, Robert Anleitner, Therese P. McAllister
Reconstructing the fires and their impact on structural components in the World Trade Center (WTC) buildings on September 11, 2001, requires extensive use of computational models. For the use of such models to be a viable investigative tool, it is

The NIST 3 Megawatt Quantitative Heat Release Rate Facility - Description and Procedures

September 1, 2004
Author(s)
Rodney A. Bryant, Thomas J. Ohlemiller, Erik L. Johnsson, Anthony P. Hamins, B S. Grove, William F. Guthrie, Alexander Maranghides, George W. Mulholland
The 3 Megawatt Heat Release Rate Facility was developed at NIST as a first step toward having broad capabilities for making quantitative large scale fire measurements. Such capabilities will be used at NIST to validate fire models and to develop sub-grid

The NIST 3 Megawatt Quantitative Heat Release Rate Facility

January 12, 2004
Author(s)
Rodney A. Bryant, Thomas J. Ohlemiller, Erik L. Johnsson, Anthony P. Hamins, B S. Grove, William F. Guthrie, Alexander Maranghides
The 3 Megawatt Heat Release Rate Facility was developed at NIST as a first step toward having broad capabilities for making quantitative large scale fire measurements. Such capabilities will be used at NIST to validate fire models and to develop sub-grid

NIST 3 Megawatt Quantitative Heat Release Rate Facility (NIST SP 1007)

December 1, 2003
Author(s)
Rodney A. Bryant, Thomas J. Ohlemiller, Erik L. Johnsson, Anthony P. Hamins, B S. Grove, William F. Guthrie, Alexander Maranghides, George W. Mulholland
The 3 Megawatt Heat Release Rate Facility was developed at NIST as a first step toward having broad capabilities for making quantitative large scale fire measurements. Such capabilities will be used at NIST to validate fire models and to develop sub-grid

Radiative Heat Flux Measurement Uncertainty

October 1, 2003
Author(s)
Rodney A. Bryant, C A. Womeldorf, Erik L. Johnsson, Thomas J. Ohlemiller
As part of an effort to characterize the uncertainties associated with heat flux measurements in a fire environment, an uncertainty analysis example was performed using measurement data from a room corner surface products test that followed the guidelines

Report of Experimental Results for Tests 2,3, and 4 of the International Fire Model Benchmarking and Validation Exercise #3

July 1, 2003
Author(s)
Anthony P. Hamins, Michelle K. Donnelly, Erik L. Johnsson, Alexander Maranghides, George W. Mulholland
As part of its Fire Risk Research Program, the NRC (Nuclear Regulatory Commission) and NIST (National Institute of Standards and Technology) are participating in an International Collaborative Fire Model Project (ICFMP) to assess and validate fire computer

Report of Test on Experimental Conditions and Preliminary Results for the International Fire Model Benchmarking And Validation Exercise #3

June 1, 2003
Author(s)
Anthony P. Hamins, Alexander Maranghides, Erik L. Johnsson, Michelle K. Donnelly, Jiann C. Yang, George W. Mulholland
As part of its Fire Risk Research Program, the NRC (Nuclear regulatory Commission) and NIST (National Institute of Standards and Technology) are participating in an International Collaborative Fire Model Project (ICFMP) to assess and validate fire computer

Smoke Component Yields From Room-Scale Fire Tests (NIST TN 1453)

April 1, 2003
Author(s)
Richard G. Gann, Jason D. Averill, Erik L. Johnsson, Marc R. Nyden, Richard D. Peacock
This report presents the methodology for and results from a series of room-scale fire tests to produce data on the yields of toxic products in both pre-flashover and post-flashover fires. The combustibles examined were: a sofa made of upholstered cushions

Performance of a Fast Response Agent Concentration Meter

May 2, 2000
Author(s)
Erik L. Johnsson, George W. Mulholland, Gerald T. Fraser, A Zuban, I I. Leonov
There is a need for monitoring the concentration of potential halon replacement chemicals with millisecond response time [I]. One scenario of great concern to the Air Force is the penetration of an enemy shell into the fuel tank of an aircraft. To prevent