Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 197

Noiseless Loss Suppression for Entanglement Distribution

December 2, 2024
Author(s)
Cory Nunn, Daniel Jones, Todd Pittman, Brian Kirby
Recent work by Mičuda et al. [Phys. Rev. Lett 109, 180503 (2012)] suggests that pairing noiseless amplification with noiseless attenuation can conditionally suppress loss terms in the direct transmission of quantum states. Here we extend this work to

Phase stabilization with single photon detection for quantum networks

October 29, 2024
Author(s)
Jabir Marakkarakath Vadakkepurayil, Daehyun Ahn, FNU Nur Fajar Rizqi Annafianto, Ivan Burenkov, Abdella Battou, Sergey Polyakov
Maintaining stable phases in interferometric systems and optical links is pivotal for the functionality of diverse quantum communication protocols. However, conventional phase stabilization methods use classical optical signals that may corrupt quantum

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

September 16, 2024
Author(s)
Noah Schlossberger, Samuel Berweger, Nikunjkumar Prajapati, Andrew Rotunno, Alexandra Artusio-Glimpse, Matthew Simons, Abrar Sheikh, Eric Norrgard, Stephen Eckel, Christopher Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields. Over the

Assessing the Benefits and Risks of Quantum Computers

July 17, 2024
Author(s)
Travis Scholten, Carl Williams, Dustin Moody, Michele Mosca, William Hurley, William J. Zeng, Matthias Troyer, Jay Gambetta
Quantum computing is an emerging technology with potentially far-reaching implications for national prosperity and security. Understanding the timeframes over which economic benefits and national security risks may manifest themselves is vital for ensuring

100-km entanglement distribution with coexisting quantum and classical signals in a single fiber

July 5, 2024
Author(s)
Anouar Rahmouni, Paulina Kuo, Ya-Shian Li-Baboud, Ivan Burenkov, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Dileep Reddy, Mheni Merzouki, Lijun Ma, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
The development of prototype metropolitan-scale quantum networks is underway and entails transmitting quantum information via single photons through deployed optical fibers spanning several tens of kilometers. Among the major challenges in metropolitan

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Andrew Rotunno, Aly Artusio-Glimpse, Abrar Sheikh, Eric Norrgard, Christopher L. Holloway, Stephen Eckel
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Rydberg states of alkali atoms in atomic vapor as SI-traceable field probes and communications receivers

May 8, 2024
Author(s)
Noah Schlossberger, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, Matt Simons, Abrar Sheikh, Andrew Rotunno, Eric Norrgard, Stephen Eckel, Christopher L. Holloway
Rydberg states of alkali atoms are highly sensitive to electric fields because their electron wavefunction has a large spatial extent, leading to large polarizabilities for static fields and large transition dipole moments for time-varying fields

Synchronized source of indistinguishable photons for quantum networks

May 2, 2024
Author(s)
Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Jabir Marakkarakath Vadakkepurayil, Paulina Kuo, Thomas Gerrits, Oliver T. Slattery, Sergey Polyakov
We present a source of indistinguishable photons at telecom wavelength, synchronized to an external clock, for the use in distributed quantum networks. We characterize the indistinguishability of photons generated in independent parametric down-conversion

Increased instantaneous bandwidth of Rydberg atom electrometry with an optical frequency comb probe

February 27, 2024
Author(s)
Aly Artusio-Glimpse, David Long, Sean Bresler, Nik Prajapati, Dangka Shylla, Andrew Rotunno, Matt Simons, Samuel Berweger, Noah Schlossberger, Thomas W. LeBrun, Christopher L. Holloway
We show that the use of a probe optical frequency comb leads to dramatically improved bandwidth (as high as 12+/-1 MHz) for the detection of modulated radio frequencies in Rydberg atom-based electrometry.

Suppressing communication errors using quantum-enabled forward error correction

September 28, 2023
Author(s)
Ivan Burenkov, FNU Nur Fajar Rizqi Annafianto, Jabir Marakkarakath Vadakkepurayil, Abdella Battou, Sergey Polyakov
Scalable optical communication requires error identification and correction to protect and recover information from channel and detection noise. Forward error correction protects information transmitted with optical pulses by amending errors using

Experimental demonstration of local area entanglement distribution between two distant nodes, coexisting with classical synchronization

May 12, 2023
Author(s)
Anouar Rahmouni, Paulina Kuo, Yicheng Shi, Jabir Marakkarakath Vadakkepurayil, Nijil Lal Cheriya Koyyottummal, Ivan Burenkov, Ya-Shian Li-Baboud, Mheni Merzouki, Abdella Battou, Sergey Polyakov, Oliver T. Slattery, Thomas Gerrits
We successfully demonstrated polarization entanglement distribution and classical time synchronization using a high-accuracy precision time protocol between two quantum nodes located 250 meters apart using a single fiber simultaneously carrying both

Constraints on Gaussian Error Channels and Measurements for Quantum Communication

April 10, 2023
Author(s)
Alexander T. Kwiatkowski, Ezad Shojaee, Sristy Agrawal, Akira Kyle, Curtis Rau, Scott Glancy, Emanuel Knill
Joint Gaussian measurements of two quantum systems are important for quantum communication between remote parties and are often used in continuous-variable teleportation or entanglement-swapping protocols. Many of the errors in real-world implementations

Synchronization and Coexistence in Quantum networks

March 27, 2023
Author(s)
Ivan Burenkov, Alexandra Semionova, FNU Hala, Thomas Gerrits, Anouar Rahmouni, DJ Anand, Ya-Shian Li-Baboud, Oliver T. Slattery, Abdella Battou, Sergey Polyakov
We investigate the coexistence of clock synchronization protocols with quantum signals in a common single-mode optical fiber. By measuring optical noise between 1500 nm to 1620 nm we demonstrate a potential for up to 100 quantum DWDM channels coexisting

Experimental Ambitions for DC-Area Quantum Network Testbed

March 23, 2023
Author(s)
Oliver T. Slattery, Adam Black
Quantum networks [1] bear the promise of one day enabling diverse applications such as secure communications, distributed quantum computing, distributed sensing, and time distribution, in addition to other applications not yet identified. In recent years

Portable polarization-entangled photon source & receiver toolset for quantum network metrology

October 4, 2022
Author(s)
Anouar Rahmouni, Thomas Gerrits, Paulina Kuo, Dileep Reddy, Lijun Ma, Xiao Tang, Oliver T. Slattery
A quantum network will consist of many physically separated nodes connected by quantum communication channels that distribute entanglement between them. Such nodes will require mechanisms for the generation, routing, and measurement of quantum states to

Towards entangled photon pair generation from SiC-based microring resonator

October 4, 2022
Author(s)
Anouar Rahmouni, Lijun Ma, Xiao Tang, Thomas Gerrits, Lutong Cai, Qing Li, Oliver T. Slattery
Entangled photon sources are fundamental building blocks for quantum communication and quantum networks. Recently, silicon carbide emerged as a promising material for integrated quantum devices since it is CMOS compatible with favorable mechanical
Displaying 1 - 25 of 197