Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 176 - 200 of 672

Background and blended spectral line reduction in precision spectroscopy of EUV and x-ray transitions in highly charged ions

March 3, 2023
Author(s)
Yuri Ralchenko, Joseph N. Tan, Aung S. Naing, Galen O'Neil, Paul Szypryt, Dipti Dipti, Grant Mondeel, Roshani Silwal, Alain Lapierre, Steven Blundell, Gerald Gwinner, Antonio Camargo Villari, Endre Takacs
We report a method in EBIT spectral analysis that reduces signal from contaminant lines of 1 known or unknown origin. We utilize similar ion charge distributions of heavy highly charged ions 2 that create similar potentials for lighter contaminating

Flight demonstration of a miniature atomic scalar magnetometer based on a microfabricated rubidium vapor cell

March 3, 2023
Author(s)
Haje Korth, John Kitching, John Bonnell, Brian Bryce, George Clark, Weston Edens, Christopher Gardner, Wiliam Rachelson, Amanda Slagle
We have developed an atomic magnetometer based on the rubidium isotope 87Rb and a microfabricated silicon/glass vapor cell for the purpose of qualifying the instrument for space flight during a ride-along opportunity on a sounding rocket. The instrument

Analysis of E3 Transitions in Ag-like High-Z Ions Observed with the NIST EBIT

March 1, 2023
Author(s)
Yuri Ralchenko, David La Mantia, Aung S. Naing, Paul Szypryt, Joseph N. Tan, Endre Takacs, Dipti Dipti, Yang Yang, Adam Hosier, Hunter Staiger
We report measurements and identification of the E3 4f$_7/2,5/2}$-5s$_1⁄2$ transitions and E1 allowed transitions in Ag-like W (Z=74), Re (Z=75), and Ir (Z=77). The spectra were recorded at the NIST EBIT using a grazing-incidence EUV spectrometer. The

Highly-twisted states of light from a high quality factor photonic crystal ring

February 27, 2023
Author(s)
Xiyuan Lu, Mingkang Wang, Feng Zhou, Mikkel Heuck, Wenqi Zhu, Vladimir Aksyuk, Dirk Englund, Kartik Srinivasan
Twisted light with orbital angular momentum (OAM) has been extensively studied for applications in quantum and classical communications, microscopy, and optical micromanipulation. Ejecting the naturally high angular momentum whispering gallery modes (WGMs)

Topological charge pumping with subwavelength Raman lattices

February 15, 2023
Author(s)
Ian Spielman, Gediminas Juzeliunas, Domantas Burba, mantas Raciunas
Recent experiments demonstrated deeply subwavelength lattices using atoms with $N$ internal states Raman-coupled with lasers of wavelength $\lambda$. The resulting unit cell was $\lambda/2N$ in extent, an $N$-fold reduction compared to the usual $\lambda/2

Rydberg Engineering: Recent Techniques for Sensitive Field Measurements

February 9, 2023
Author(s)
Drew Rotunno, Nik Prajapati, Samuel Berweger, Aly Artusio-Glimpse, MATTHEW SIMONS, chris holloway, Amy Robinson
Highly-excited Rydberg atoms have been used for International System of Unit (SI)-traceable radio-frequency (RF) electric field and power measurements, but are limited in sensitivity to order 100 $\mu$V/m/$\sqrtHz}$ by noise and linewidth issues. These

Complete collision data set for electrons scattering on molecular hydrogen and its isotopologues: IV. Vibrationally-resolved ionization of the ground and excited electronic states.

January 31, 2023
Author(s)
Yuri Ralchenko, Barry I. Schneider, Liam Scarlett, Eric Jong, Igor Bray, Starsha Odelia, Mark Zammit, Dmitry Fursa
We present a comprehensive set of vibrationally-resolved cross sections for electron-impact ionization of molecular hydrogen and its isotopologues (H2, D2, T2, HD, HT, and DT) in both the ground and excited electronic states. We apply the adiabatic-nuclei

Photon echoes using atomic frequency combs in Pr:YSO -- experiment and semiclassical theory

January 30, 2023
Author(s)
Zachary Levine, Aditya N. Sharma, Kumel H. Kagalwala, Martin A. Ritter, Eli J. Weissler, Elizabeth A. Goldschmidt, Alan Migdall
Photon echoes in rare-earth-doped crystals are studied to understand the challenges of making broadband quantum memories using the atomic frequency comb (AFC) protocol in systems with hyperfine structure. The hyperfine structure of Pr3+ poses an obstacle

NIST-F3, a cesium fountain frequency reference

January 24, 2023
Author(s)
Gregory Hoth, Alexander Radnaev, Peter Mitchell, Jeffrey Sherman, Vladislav Gerginov
A cesium fountain frequency reference known as NIST-F3 is under development at the National Institute of Standards and Technology (NIST). The fountain is intended to provide input for the NIST timescale and assist with evaluation of NIST's primary and

Dark solitons in Bose-Einstein condensates: a dataset for many-body physics research

December 21, 2022
Author(s)
Amilson R. Fritsch, Shangjie Guo, Sophia Koh, Ian Spielman, Justyna Zwolak
We establish a dataset of over 1.6 x 10^4 experimental images of Bose–Einstein condensates containing solitonic excitations to enable machine learning (ML) for many-body physics research. About 33 % of this dataset has manually assigned and carefully

Precise Quantum Measurement of Vacuum with Cold Atoms

December 20, 2022
Author(s)
Daniel Barker, Bishnu Acharya, James A. Fedchak, Nikolai Klimov, Eric Norrgard, Julia Scherschligt, Eite Tiesinga, Stephen Eckel
We describe the cold-atom vacuum standards (CAVS) under development at the National Institute of Standards and Technology. The CAVS measures pressure in the ultra-high and extreme-high vacuum regimes by measuring the loss rate of sub-millikelvin sensor

Constructing quantum many-body scar Hamiltonians from Floquet automata

November 22, 2022
Author(s)
Michael Gullans, Pierre-Gabriel Rozon, Kartiek Agarwal
We provide a systematic approach for constructing approximate quantum many-body scars (QMBS) starting from two-layer Floquet automaton circuits that exhibit trivial many-body re- vivals. We do so by applying successively more restrictions that force local

Optical Atomic Clock aboard an Earth-orbiting Space Station (OACESS): Enhancing searches for physics beyond the standard model in space

November 18, 2022
Author(s)
Vladimir Schkolnik, Dmitry Budker, Oliver Farttman, Victor Flambaum, Leo Hollberg, Tigran Kalaydzhyan, Shimon Kolkowitz, Markus Krutzik, Andrew Ludlow, Nathan R. Newbury, Christopher Pyrlik, Laura Sinclair, Yevgeny Stadnik, Ingmari Tietje, Jun Ye, Jason Williams
We present a concept for a high-precision optical atomic clock (OAC) operating on an Earth-orbiting space station. This pathfinder science mission will compare the space-based OAC with one or more ultra-stable terrestrial OACs to search for space-time

Dynamical Instability of 3d Stationary and Traveling Planar Dark Solitons

November 9, 2022
Author(s)
Ian Spielman, Amilson R. Fritsch, T. Mithun, Panayotis Kevrekidis
Here we revisit the topic of stationary and propagating solitonic excitations in self-repulsive three-dimensional Bose-Einstein condensates by quantitatively comparing theoretical analysis and associated numerical computations with our experimental results

Scalable Quantum Logic Spectroscopy

November 2, 2022
Author(s)
Kaifeng Cui, Jose Valencia, Kevin Boyce, Ethan Clements, David Leibrandt, David Hume
In quantum logic spectroscopy (QLS), one species of trapped ion is used as a sensor to detect the state of an otherwise inaccessible ion species. This extends precision measurements to a broader class of atomic and molecular systems for applications like

Tip-enhanced Raman scattering for atomic-scale spectroscopy and imaging

October 24, 2022
Author(s)
Jeremy Schultz
Atomic scale spectroscopy provides an exceptional ability to define electronic, optical, thermal, mechanical, and chemical properties of materials at the nanoscale. At these scales, dimensional confinement can lead to new and unusual properties, where the

Periodic Table of the Elements

October 5, 2022
Author(s)
Karen Olsen
The periodic table contains NIST's latest critically evaluated data for atomic properties of the elements.
Displaying 176 - 200 of 672
Was this page helpful?