Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 151 - 175 of 657

Modes of laser melting in additive manufacturing of metals

October 20, 2022
Author(s)
Cang Zhao, Bo Shi, Shuailei Chen, Tao Sun, Brian Simonds, Anthony Rollett
In the laser powder bed fusion additive manufacturing of metals, extreme thermal conditions create many highly dynamic physical phenomena, such as vaporization and recoil, Marangoni convection, and protrusion and keyhole instability. Collectively, however

STEP-NC Process Planning for Powder Bed Fusion Additive Manufacturing

October 20, 2022
Author(s)
Fahad Milaat, Paul Witherell, Martin Hardwick, Ho Yeung, Vincenzo Ferrero, Laetitia Monnier, Matthew Brown
Powder bed fusion (PBF) is an additive manufacturing (AM) technology that uses high-power beams to fuse powder material into layers of scanned patterns, thus producing parts with great geometric complexity. For PBF, the selection of appropriate process

Research and Application of Machine Learning for Additive Manufacturing

October 1, 2022
Author(s)
Paul Witherell, Yan Lu, Ying Liu, David W. Rosen, Timothy Simpson, Charlie Wang
Additive manufacturing (AM) is poised to bring a revolution due to its unique production paradigm. It offers the prospect of mass customization, flexible production, on-demand and decentralized manufacturing. However, a number of challenges stem from not

Are additive manufacturing systems accurately delivering laser power?

September 12, 2022
Author(s)
Brian Simonds, Kyle Rogers, Paul A. Williams
At the core of most metal additive manufacturing (AM) systems is a high-power (100-1000 W) laser. The delivered light energy drives the entire AM process by determining the melt volume and maximum temperature, which ultimately dictates solidification and

The Strategy for American Leadership in High-Consequence Additive Manufacturing

September 9, 2022
Author(s)
Mark Benedict, Shawn P. Moylan, Souhail Al-Abed, Cindy Ashforth, Y. Kevin Chou, Matthew Di Prima, Alaa Elwany, Michael Gorelik, Astrid Lewis, Todd Luxton, Blake Marshall, William Mullins, Linda Sapochak, Richard Russell, James A. Warren, Douglas Wells
Over the past decade, a consistent theme in enhancing U.S. global competitiveness has been the need for U.S. leadership in critical advanced manufacturing technologies. Additive manufacturing (AM), also known as 3D Printing, has been among those critical

Simulated stress mitigation strategies in embedded 3D bioprinting

August 30, 2022
Author(s)
Leanne Friedrich, Ross Gunther, Jonathan Seppala
Extrusion-based 3D bioprinting is a powerful tool for fabricating complex cell-laden constructs. Embedded Ink Writing (EIW) is an extrusion-based printing technique wherein a nozzle embedded into a support bath writes continuous filaments. Because it

X-ray computed tomography analysis of pore deformation in IN718 made with directed energy deposition via in-situ tensile testing

August 28, 2022
Author(s)
Orion Kafka, Cheng Yu, Puikei Cheng, Sarah Wolff, Jennifer Bennett, Edward Garboczi, Jian Cao, Xianghui Xiao, Wing Kam Liu
Directed energy deposition (DED) is a metal additive manufacturing technique often used for larger-scale components and part repair. It can result in material performance that differs from conventionally processed metal. This work studies spatial and

Effects of local processing parameters on microstructure, texture, and mechanical properties of electron beam powder bed fusion manufactured Ti-6Al-4V

August 27, 2022
Author(s)
Edwin Schwalbach, Jake Benzing, Vikas Sinha, Todd Butler, Adam Pilchak, Kevin Chaput, Norman Schehl, Reji John, Nik Hrabe
Electron beam powder bed fusion scan strategies for parts or part groupings of various sizes and scan line lengths have been found to inadvertently lead to significant variations in crystallographic texture and mechanical properties for Ti–6Al–4V. This
Displaying 151 - 175 of 657