Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 876 - 900 of 913

Achieving Higher Photon Counting Rates Using Multiplexed Detectors

August 13, 2006
Author(s)
Stefania Castelletto, Ivo P. Degiovanni, Alan L. Migdall, Sergey Polyakov, V Schettini
As the quantum information field advances, the need for improved single-photon devices is becoming more critical. Quantum information systems are often limited by detector deadtime to count rates of a few MHz, at best. We present a multiplexed detection

Efficient generation of correlated photon pairs in a microstructure fiber

December 15, 2005
Author(s)
Jingyun Fan, Alan L. Migdall, L Wang
We report efficient generation of correlated photon pairs through degenerate four-wave mixing in a microstructure fiber. With 735.7 nm pump pulses producing correlated signal (688.5 nm) and idler (789.8 nm) photons in a 1.8 m microstructure fiber, we

Efficient Generation of Correlated Photon Pairs in a Microstructure Fiber

December 15, 2005
Author(s)
Jingyun Fan, Alan L. Migdall, L Wang
We report efficient generation of correlated photon pairs through degenerate four-wave mixing in microstructure fibers. With 735.7 nm pump pulses producing conjugate signal (688.5 nm) and idler (789.8 nm) photons in an 1.8 m microstructure fiber, we detect

On-demand Single Photons from Individual Epitaxial Quantum Dots

October 24, 2005
Author(s)
Richard P. Mirin, Martin J. Stevens
We will describe our group's efforts to use epitaxial InGaAs/GaAs quantum dots as sources of on-demand single photons and indistinguishable single photons. We have demonstrated second order intensity correlation measurements, g 2τ, with g 2(0) as low as 0

Criteria for Exact Qudit Universality

October 1, 2005
Author(s)
Stephen Bullock, G K. Brennen, Dianne M. O'Leary
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Enhanced Quantum State Detection Efficiency Through Quantum Information Processing

October 1, 2005
Author(s)
T Schaetz, M D. Barrett, D. Leibfried, J. Britton, J. Chiaverini, W M. Itano, J. D. Jost, Emanuel Knill, C. Langer, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Quantum Computing with Realistically Noisy Devices

October 1, 2005
Author(s)
Emanuel H. Knill
There are quantum algorithms that can efficiently simulate quantum physics, factor large numbers and estimate integrals. As a result, quantum computers can solve otherwise intractable computational problems. One of the main problems of experimental quantum

Stability of Global Entanglement in Thermal States of Spin Chains

October 1, 2005
Author(s)
Stephen Bullock, G K. Brennen
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

High resolution, high collection efficiency in numerical aperture increasing lens microscopy of individual quantum dots

August 9, 2005
Author(s)
Zhiheng H. Liu, B. B. Goldberg, Stephen B. Ippolito, Anthony N. Vamivakas, M. S. Unlu, Richard Mirin
We demonstrate the application of a subsurface solid immersion technique to the photoluminescence spectroscopy of individual quantum dots. Contrasted with the conventional solid immersion microscopy, we used a numerical aperture increasing lens and moved

Implementation of the Semiclassical Quantum Fourier Transform in a Scalable System

May 1, 2005
Author(s)
J. Chiaverini, J. Britton, D. Leibfried, Emanuel Knill, M D. Barrett, R. B. Blakestad, W M. Itano, J. D. Jost, C. Langer, R Ozeri, T Schaetz, D Britton, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Liquid-state NMR Simulations of Quantum Many-body Problems

April 1, 2005
Author(s)
C. Negrevergne, Rolando Somma, Gerardo Ortiz, Emanuel Knill, R. Laflamme
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Matrix Decompositions and Quantum Circuit Design

December 1, 2004
Author(s)
Stephen Bullock
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Realization of Quantum Error Correction

December 1, 2004
Author(s)
J. Chiaverini, D. Leibfried, T Schaetz, M D. Barrett, R. B. Blakestad, J. Britton, W M. Itano, J. D. Jost, Emanuel Knill, C. Langer, R Ozeri, David J. Wineland
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Photonic Technologies for Quantum Information Processing

October 2, 2004
Author(s)
Prem Kumar, P G. Kwiat, Alan L. Migdall, Sae Woo Nam, Jelena Vuckovic, F Wong
The last several years have seen tremendous research toward practical optical quantum information processing, including single- and entangled-photon sources and high-efficiency photon counting detectors, covering a range of wavelengths. We review some of

Nature and Measure of Entanglement in Quantum Phase Transactions

October 1, 2004
Author(s)
Rolando Somma, Gerardo Ortiz, Howard Barnum, Emanuel Knill, Lorenza Viola
The n-qubit concurrence canonical decomposition (CCD) is a generalization of the two-qubit canonical decomposition SU(4)=[SU(2) (x) SU(2)] ? [SU(2) (x) SU(2)], where ? is the commutative group which phases the maximally entangled Bell basis. A prequel

Temperature-dependent, single quantum dot single photon statistics

May 16, 2004
Author(s)
Richard P. Mirin
We describe temperature-dependent photon antibunching measurements from single InGaAs/GaAs quantum dots. The second order intensity correlation demonstrates single emitter emission up to 120 K and nonclassical light emission to 135 K.

Banishing Quasiparticles From Josephson-Junction Qubits: Why and How To Do It

June 1, 2003
Author(s)
Kristine Lang, Sae Woo Nam, Joe Aumentado, John M. Martinis, C Urbina
Current-biased Josephson junctions are prime candidates for the implementation of quantum bits; however, a present limitation is their coherence time. In this paper we qualitatively describe the role of quasiparticles in decoherence. We discuss two methods

Tungsten Transition-Edge Sensors for IR/Optical/UV Photon Counting

June 1, 2003
Author(s)
Aaron J. Miller, Sae Woo Nam, John M. Martinis, Alexander V. Sergienko
Tungsten transition-edge sensors have been demonstrated to have impressive photon-counting capabilities. Of particular interest is the expected impact to the applications of low-flux astronomy and photonic quantum information. The combination of high
Displaying 876 - 900 of 913
Was this page helpful?