Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 801 - 825 of 913

Scalable arrays of doped silicon RF Paul traps

October 26, 2009
Author(s)
Joseph W. Britton, Dietrich G. Leibfried, James A. Beall, Brad R. Blakestad, Janus H. Wesenberg, David J. Wineland
We report techniques for the fabrication of multi-zone linear RF Paul traps which exploit the machinability and electrical conductivity of bulk doped silicon. The approach was verified by trapping and Doppler cooling 24Mg+ ions in two trap geometries: a

Interferometry with a photon-number resolving detector

October 19, 2009
Author(s)
Aaron Pearlman, Christoph Wildfeuer, Jun Chen, Jingyun Fan, Alan L. Migdall, Jonathan Dowling
With photon-number resolving detectors, we show compression of interference fringes with in- creasing photon numbers for a Fabry-P erot interferometer. This feature provides a higher precision in determining the position of the interference maxima compared

Innovations in Maximum Likelihood Quantum State Tomography

October 9, 2009
Author(s)
Scott C. Glancy, Emanuel H. Knill, Thomas Gerrits, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin
At NIST we are engaged in an experiment whose goal is to create superpositions of optical coherent states (such superpositions are sometimes called "Schroedinger cat" states). We use homodyne detection to measure the light, and we apply maximum likelihood

Ultra-cold mechanical resonators coupled to atoms in an optical lattice

September 17, 2009
Author(s)
Andrew Geraci, John E. Kitching
We propose an experiment utilizing an array of cooled micro-cantilevers coupled to a sample of ultra-cold atoms trapped near a micro-fabricated surface. The cantilevers allow individual lattice site addressing for atomic state control and readout, and

Eigenpath Traversal by Phase Randomization

September 1, 2009
Author(s)
S. Boixo, Emanuel Knill, Rolando Somma
A computation in adiabatic quantum computing is achieved by traversing a path of nondegenerate eigenstates of a continuous family of Hamiltonians. We introduce a method that traverses a discretized form of the path: at each step we evolve with the

High-efficiency photon-number resolving detectors based on hafnium transition-edge sensors

September 1, 2009
Author(s)
Adriana E. Lita, Brice R. Calkins, Lenson Pellouchoud, Aaron J. Miller, Sae Woo Nam
Generation of non-classical states of light is at the foundation of numerous quantum optics experiments and optical quantum information processing implementations. One such non-Gaussian optical quantum state can be obtained by photon subtraction from a

Energy Decay in Josephson Qubits from Non-equilibrium Quasiparticles

August 26, 2009
Author(s)
Jose A. Aumentado, John M. Martinis, M Ansmann
We calculate the energy decay rate of Josephson qubits and superconducting resonators from non-equilibrium quasiparticles. The decay rates from experiments are shown to be consistent with our predictions based on a prior measurement of the quasiparticle

Measuring high-order coherences of chaotic and coherent optical states

August 24, 2009
Author(s)
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a new approach to measuring high-order temporal coherences that uses a four-element superconducting nanowire single-photon detector (SNSPD) in which four independent, single-photon-sensitive elements are interleaved over a single spatial

High-Fidelity Quantum Control Using 9Be+ Ion Crystals in a Penning Trap

August 19, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We provide an introduction to the use of ion crystals in a Penning trap for experiments in quantum information. Macroscopic Penning traps allow for the containment of a few to a few million atomic ions whose internal states may be used in quantum

PRF-Security Revisited With New Efficient Single-Keyed Domain Extensions

August 17, 2009
Author(s)
Mridul Nandi
In this paper, we study a wide class of single-keyed domain extension algorithms, called generalized domain extension (\tx{GDE}), extending a keyed function $F_K : {0,1}^b \to {0,1}^n$ to a keyed function $\overline{F}_K : {0,1}^* \to {0,1}^n$, $K \in {0,1

Optical Lattice-Based Addressing and Control of Long-Lived Neutral-Atom Qubits

July 6, 2009
Author(s)
Nathan Lundblad, J Obrecht, Ian B. Spielman, James V. Porto
The establishment of a scalable, addressable, and long-lived scheme for quantum computing would be a scientific watershed, harnessing the laws of quantum physics to solve classically intractable problems. Many proposed computational platforms are driven by

Low Noise Amplification of a Continuous Variable Quantum State

June 29, 2009
Author(s)
Raphael C. Pooser, Alberto M. Marino, Vincent Boyer, Kevin M. Jones, Paul D. Lett
We present an experimental realization of a low-noise, universal, phase-insensitive optical amplifier using four-wave mixing interaction in hot Rb vapor. Performance near the quantum limit for a range of amplifier gains, including near unity, can be

Experimental Uhrig Dynamical Decoupling Using Trapped Ions

June 25, 2009
Author(s)
Michael J. Biercuk, Hermann Uys, Aaron Vandevender, Nobuyasu Shiga, Wayne M. Itano, John J. Bollinger
We present a detailed experimental study of the Uhrig Dynamical Decoupling (UDD) sequence in a variety of noise environments. Our qubit system consists of a crystalline array of 9Be + ions confined in a Penning trap. We use an electron-spin-flip transition

Vacuum-Gap Capacitors for Low-Loss Superconducting Resonant Circuits

June 16, 2009
Author(s)
Katarina Cicak, Michael S. Allman, Joshua Strong, Kevin Osborn, Raymond W. Simmonds
Low-loss microwave components are used in many superconducting resonant circuits from multiplexed readouts of low-temperature detector arrays to quantum bits. Two-level system (TLS) defects in amorphous dielectric materials cause excess energy loss. In an

High-brightness, low-noise, all-fiber photon pair source

June 4, 2009
Author(s)
Shellee D. Dyer, Burm Baek, Sae Woo Nam
We demonstrate an all-fiber photon pair source for the critical telecom C-band. We achieve high pair generation rates in excess of 10 MHz while maintaining coincidence-to-accidental ratios (CARs) greater than 100. This is one of the brightest and lowest

Application of the Josephson effect in electrical metrology

June 1, 2009
Author(s)
Samuel P. Benz, Blaise Jeanneret
Over the last 30 years, metrology laboratories have used the quantum behavior of the Josephson effect to greatly improve voltage metrology. The following article reviews the history and present status of the research and development Josephson voltage

Generation of optical Schrodinger cat states by number-resolved squeezed photon subtraction

May 31, 2009
Author(s)
Thomas Gerrits, Scott C. Glancy, Tracy S. Clement, Brice R. Calkins, Adriana E. Lita, Aaron J. Miller, Alan L. Migdall, Sae Woo Nam, Richard P. Mirin, Emanuel H. Knill
We have generated and measured an approximation of an optical Schrödinger cat state by photon subtraction from a squeezed state. Using single-photon avalanche photodiode detectors and photon-number-resolving transition edge sensors, we were able to extract

Third- and fourth-order coherences measured with a multi-element superconducting nanowire single-photon detector

May 29, 2009
Author(s)
Martin J. Stevens, Burm Baek, Eric Dauler, Andrew J. Kerman, Richard J. Molnar, Scott A. Hamilton, Karl Berggren, Richard P. Mirin, Sae Woo Nam
We demonstrate a technique for measuring third- and fourth-order coherences using a multi-element detector consisting of four independent, interleaved superconducting nanowire single-photon detectors, and observe strong bunching from a chaotic light source
Displaying 801 - 825 of 913
Was this page helpful?