Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 776 - 800 of 2503

Quantum entanglement between an atom and a molecule

May 20, 2020
Author(s)
Yiheng Lin, David Leibrandt, Dietrich Leibfried, Chin-wen Chou
Expanding quantum control to a broad range of physical systems paves the way for advances in various aspects of science and technology, such as stringent tests of fundamental physics, quantum-enhanced sensors, and quantum information processing

Ion transport and reordering in a two-dimensional trap array

May 19, 2020
Author(s)
Yong Wan, Robert Jordens, Stephen Erickson, Jenny Wu, Ryan S. Bowler, Ting R. Tan, Panyu Hou, Andrew C. Wilson, Dietrich Leibfried
Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected

Linear Polarization of Anisotropically Excited X-ray Lines from the n=2 Complex in He-like Ar16+

May 13, 2020
Author(s)
Dipti Goyal, Sean W. Buechele, Amy C. Gall, Samuel C. Sanders, Csilla I. Szabo-Foster, Roshani Silwal, Endre A. Takacs, Yuri Ralchenko
High-resolution x-ray spectra were recorded at the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) using two Johann-type crystal spectrometers, with their dispersion planes oriented parallel and perpendicular to the beam

Modeling motional energy spectra and lattice light shifts in optical lattice clocks

May 8, 2020
Author(s)
Kyle Beloy, Will McGrew, Xiaogang Zhang, Daniele Nicolodi, Robert J. Fasano, Youssef Hassan, Roger Brown, Andrew Ludlow
We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative to the lattice axis. Our model respects the

Dielectric loss extraction for superconducting microwave resonators

May 5, 2020
Author(s)
Corey Rae H. McRae, Russell Lake, Junling Long, Mustafa Bal, Xian Wu, Battogtokh Jugdersuren, Thomas Metcalf, Xiao Liu, David P. Pappas
The investigation of two-level-state (TLS) loss in dielectric materials and interfaces remains at the forefront of materials research in superconducting quantum circuits. We demonstrate a method of TLS loss extraction of a thin film dielectric by measuring

Wavelength Standards

May 5, 2020
Author(s)
Alexander Kramida
The concept of wavelength standards is briefly explained on an undergraduate student level, and a guide to their current values and sources is given

Tuning interfacial Dzyaloshinskii-Moriya interactions in thin amorphous ferrimagnetic alloys

May 4, 2020
Author(s)
Yassine Quessab, Jun-Wen Xu, Chung Ting Ma, W. Zhou, Grant A. Riley, Justin Shaw, Hans Nembach, S. J. Poon, Andrew D. Kent
Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic

Accurate Integral Counting Using Multi-channel Analyzers

May 1, 2020
Author(s)
Ryan P. Fitzgerald, Lynne E. King
Many techniques in radionuclide metrology rely on accurate measurement of the total count rate, that is integral counting, from a detector. In modern experiments, this can be achieved by integrating the total number of counts in an energy spectrum produced

All-fiber frequency comb at 2 mm providing 1.4-cycle pulses

May 1, 2020
Author(s)
Sida Xing, Abijith S. Kowligy, Daniel Lesko, Alexander Lind, Scott Diddams
We report an all-fiber approach to generating sub-2-cycle pulses at 2 µm and a corresponding octave-spanning optical frequency comb. Our configuration leverages mature erbium:fiber laser technology at 1.5 µm to provide a seed pulse for a thulium-doped

Single-Photon Sources: Approaching the Ideal through Multiplexing

April 30, 2020
Author(s)
Alan L. Migdall, Evan Meyer-Scott, Christine Silberhorn
We review the rapid recent progress in single-photon sources based on multiplexing multiple probabilistic photon-creation events. Such multiplexing allows higher single-photon probabilities and lower contamination from higher-order photon states. We study

Laser-free trapped-ion entangling gates with simultaneous insensitivity to qubit and motional decoherence

April 29, 2020
Author(s)
R. T. Sutherland, Raghavendra Srinivas, Shaun C. Burd, Hannah Knaack, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried, David T. Allcock, Daniel Slichter, S. B. Libby
The dominant error sources for state-of-the-art implementations of laser-free trapped-ion entangling gates are decoherence of the qubit state and motion. The gate error from these decoherence mechanisms can be suppressed with additional control fields, or

Frequency stability of the mode spectrum of broad bandwidth Fabry-Perot interferometers

April 27, 2020
Author(s)
Jeffrey M. Jennings, Ryan C. Terrien, Connor Fredrick, Michael Grisham, Mark Notcutt, Samuel Halverson, Suvrath Mahadevan, Scott Diddams
When illuminated by a white light source, the discrete resonances of a Fabry- Perot interferometer (FP) provide a broad bandwidth, comb-like spectrum useful for frequency calibration. We report on the design, construction, and laboratory characterization

Quantum Logic Spectroscopy with Ions in Thermal Motion

April 16, 2020
Author(s)
Daniel Kienzler, Yong Wan, Stephen Erickson, Jenny Wu, Andrew C. Wilson, David J. Wineland, Dietrich Leibfried
A mixed-species geometric phase gate has been proposed for implementing quantum logic spectroscopy on trapped ions, which combines probe and information transfer from the spectroscopy to the logic ion in a single pulse. We experimentally realize this

Quasi-elastic Neutron Scattering Measurement of Hydrogen Diffusion in a Graphene Oxide Framework

April 16, 2020
Author(s)
Matthew J. Connolly, Z. N. Buck, Carlos Wexler, Joseph C. Schaeperkoetter, H. Taub, Andrew Gillespie, Helmut Kaiser
We present quasielastic neutron scattering (QENS) spectra from molecular hydrogen adsorbed in GOF. The measurements probed the motion of adsorbed hydrogen as a function of pressure, in order to understand the relationship between the motion of adsorbed

Dynamic characterization of an alkali-ion-battery as a source for laser-cooled atoms

April 14, 2020
Author(s)
James P. McGilligan, Kaitlin R. Moore, Songbai Kang, R. Mott, A. Mis, C. Roper, Elizabeth Donley, John Kitching
We investigate a solid-state, reversible, alkali-ion-battery (AIB) capable of regulating the density of alkali atoms in a vacuum system used for the production of laser-cooled atoms. The cold-atom sample can be used with in-vacuum chronoamperometry as a

Mid-Infrared Frequency Comb Generation and Spectroscopy with Few-Cycle Pulses and hd2TH Nonlinear Optics

April 1, 2020
Author(s)
Alexander Lind, Abijith S. Kowligy, Henry R. Timmers, Flavio Caldas da Cruz, Nima Nader, Myles C. Silfies, Thomas K. Allison, Scott Papp, Scott Diddams
The mid-infrared atmospheric window of 3–5.5 μm holds valuable information regarding molecular composition and function for fundamental and applied spectroscopy. Using a robust, mode-locked fiberlaser source of 11 fs pulses in the near infrared, we

Frequency-comb spectroscopy on pure quantum states of a single molecular ion

March 27, 2020
Author(s)
Chin-wen Chou, Alejandra L. Collopy, Christoph Kurz, Yiheng Lin, Michael E. Harding, Philipp N. Plessow, Tara M. Fortier, Scott A. Diddams, Dietrich G. Leibfried, David R. Leibrandt
Spectroscopy is a powerful tool for studying molecular properties and is commonly performed on large thermal ensembles of molecules that are perturbed by motional shifts and interactions with the environment and one another, resulting in convoluted spectra

NIST Time and Frequency Bulletin

March 20, 2020
Author(s)
Kelsey A. Rodriguez
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.
Displaying 776 - 800 of 2503
Was this page helpful?