NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Frequency-comb spectroscopy on pure quantum states of a single molecular ion
Published
Author(s)
Chin-wen Chou, Alejandra L. Collopy, Christoph Kurz, Yiheng Lin, Michael E. Harding, Philipp N. Plessow, Tara M. Fortier, Scott A. Diddams, Dietrich G. Leibfried, David R. Leibrandt
Abstract
Spectroscopy is a powerful tool for studying molecular properties and is commonly performed on large thermal ensembles of molecules that are perturbed by motional shifts and interactions with the environment and one another, resulting in convoluted spectra and limited resolution. Here, we use generally applicable quantum-logic techniques to prepare a single trapped molecular ion in a pure quantum state, drive terahertz rotational transitions with an optical frequency comb, and read out the final state non-destructively, leaving the molecule ready for further manipulation. We resolve rotational transitions to 11 significant digits and derive the rotational constant of 40CaH+ to be BR= 142 501 777.9(1.7) kHz. Our approach suits a wide range of molecular ions, including polyatomics and species relevant for tests of fundamental physics, chemistry, and astrophysics.
Citation
Science
Pub Type
Journals
Keywords
Precision molecular spectroscopy, frequency comb, single molecule, rotational spectroscopy
Chou, C.
, Collopy, A.
, Kurz, C.
, Lin, Y.
, Harding, M.
, Plessow, P.
, Fortier, T.
, Diddams, S.
, Leibfried, D.
and Leibrandt, D.
(2020),
Frequency-comb spectroscopy on pure quantum states of a single molecular ion, Science
(Accessed October 7, 2025)