Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 751 - 775 of 2493

Reversible Room-Temperature Fluoride-Ion Insertion in a Tunnel-Structured Transition Metal Oxide Host

July 6, 2020
Author(s)
Cherno Jaye, Wasif Zaheer, Justin L. Andrews, Forrest P. Hyler, Conan Weiland, David A. Shapiro, Jinghua Guo, Jesus M. Velazquez, Sarbajit Banerjee, Abhishek Parija, Daniel Fischer
An energy storage paradigm orthogonal to conventional Li-ion battery chemistries can be conceptualized by employing anions as the primary charge carriers. F-ion conversion chemistries show promise but have limited cyclability as a result of the significant

Comparison of the multi-national SIM time scale to UTC and UTCr

July 1, 2020
Author(s)
J. M. Lopez, Michael Lombardi, E. de Carlos, N. Munoz, C. Ortiz, M. Gertsvolf, R. de Carvalho, R. Solis
The Sistema Interamericano de Metrologia (SIM) is one of the world's five major Regional Metrology Organizations (RMO's) recognized by the International Committee for Weights and Measures (CIPM). With the goal of allowing SIM National Metrology Institutes

Mid-infrared frequency combs at 10 GHz

June 29, 2020
Author(s)
Abijith S. Kowligy, David Carlson, Daniel D. Hickstein, Henry R. Timmers, Alexander Lind, Scott Papp, Scott Diddams
We demonstrate 10 GHz mid-infrared frequency combs spanning 3-5 μm and 7-11 μm that are generated with few-cycle electro-optic pulses and intrapulse difference-frequency generation.

Thermal Decoherence and Laser Cooling of Kerr-microresonator Solitons

June 22, 2020
Author(s)
Tara E. Drake, Jordan Stone, Travis Briles, Scott Papp
Thermal noise is ubiquitous in microscopic systems and high-precision measurements. The control of thermal noise would reveal quantum regimes1 and enable fundamental physics searches2 . Recently, nonlinearity in microresonators has enabled laser devices

Measurements of the Linear Polarization of Satellite Transitions from Li- and Be- like Ar Ions

June 18, 2020
Author(s)
Amy Gall, Dipti Goyal, Sean W. Buechele, Samuel C. Sanders, Roshani Silwal, Csilla Szabo-Foster, N Brickhouse, Yuri Ralchenko, Endre A. Takacs
Non-thermal electron distributions, such as beams of electrons, are found in many laboratory and astrophysical plasma sources and can produce anisotropic and polarized emission. Theories used to model the emission require sublevel specific analysis, which

Complete collision data set for electrons scattering on molecular hydrogen and its isotopologues: I. Fully vibrationally-resolved electronic excitation of H2(X 1O+g ).

June 16, 2020
Author(s)
Liam H. Scarlett, D Fursa, Mark C. Zammit, Igor Bray, Yuri Ralchenko, Kayla D. Davie
We present a comprehensive set of vibrationally-resolved cross sections for electron-impact electronic excitation of molecular hydrogen suitable for implementation in collisional-radiative models. The adiabatic-nuclei molecular convergent close-coupling

Determination of the isotopic change in nuclear charge radius from extreme-ultraviolet spectroscopy of highly charged ions of Xe

June 16, 2020
Author(s)
Yuri Ralchenko, Roshani Silwal, A. Lapierre, John Gillaspy, Joan M. Dreiling, S A. Blundell, Dipti Goyal, A. Borovik, Jr., G Gwinner, A.C.C. Villari, Endre Takacs
The electron beam ion trap (EBIT) at the National Institute of Standards and Technology was employed to measure the isotopic shift of the Na-like D 3s 2S1=2 3p 2P1=2;3=2, Mg-like 3s2 1S0 3s3p 1P1, Mg-like 3s2 1S0 3s3p 3P1, Al-like 3s23p 2P1=2 3s23p 2P3=2

Generating GHZ states with squeezing and post-selection

June 1, 2020
Author(s)
Byron Alexander, Hermann Uys, John Bollinger
Many quantum state preparation methods rely on a combination of dissipative quantum state initialization, followed by unitary evolution to a desired target state. Here we demonstrate the usefulness of quantum measurement as an additional tool for quantum

Comparison of Open and Solid Falling Retroreflector Gravimeters

May 29, 2020
Author(s)
Neil Ashby, Derek Van Westrum
We study whether the optical properties of a solid glass retroreflector influence the value of the acceleration of gravity $g$ determined by dropping both solid and open retroreflectors in an absolute ballistic gravimeter. The retroreflectors have

Coherent Optical Clock Down-Conversion for Microwave Frequencies with 10-18 Instability

May 22, 2020
Author(s)
Takuma Nakamura, Josue Davila-Rodriguez, Holly Leopardi, Jeffrey Sherman, Tara Fortier, Xiaojun Xie, Joe C. Campbell, Will McGrew, Xiaogang Zhang, Youssef Hassan, Daniele Nicolodi, Kyle Beloy, Andrew Ludlow, Scott Diddams, Franklyn Quinlan
Optical atomic clocks are poised to redefine the SI second, thanks to stability and accuracy more than one hundred times better than the current microwave atomic clock standard. However, the best optical clocks have not seen their performance transferred

Quantum entanglement between an atom and a molecule

May 20, 2020
Author(s)
Yiheng Lin, David Leibrandt, Dietrich Leibfried, Chin-wen Chou
Expanding quantum control to a broad range of physical systems paves the way for advances in various aspects of science and technology, such as stringent tests of fundamental physics, quantum-enhanced sensors, and quantum information processing

Ion transport and reordering in a two-dimensional trap array

May 19, 2020
Author(s)
Yong Wan, Robert Jordens, Stephen Erickson, Jenny Wu, Ryan S. Bowler, Ting R. Tan, Panyu Hou, Andrew C. Wilson, Dietrich Leibfried
Scaling quantum information processors is a challenging task, requiring manipulation of a large number of qubits with high fidelity and a high degree of connectivity. For trapped ions, this could be realized in a two-dimensional array of interconnected

Linear Polarization of Anisotropically Excited X-ray Lines from the n=2 Complex in He-like Ar16+

May 13, 2020
Author(s)
Dipti Goyal, Sean W. Buechele, Amy C. Gall, Samuel C. Sanders, Csilla I. Szabo-Foster, Roshani Silwal, Endre A. Takacs, Yuri Ralchenko
High-resolution x-ray spectra were recorded at the National Institute of Standards and Technology (NIST) electron beam ion trap (EBIT) using two Johann-type crystal spectrometers, with their dispersion planes oriented parallel and perpendicular to the beam

Modeling motional energy spectra and lattice light shifts in optical lattice clocks

May 8, 2020
Author(s)
Kyle Beloy, Will McGrew, Xiaogang Zhang, Daniele Nicolodi, Robert J. Fasano, Youssef Hassan, Roger Brown, Andrew Ludlow
We develop a model to describe the motional (i.e., external degree of freedom) energy spectra of atoms trapped in a one-dimensional optical lattice, taking into account both axial and radial confinement relative to the lattice axis. Our model respects the

Dielectric loss extraction for superconducting microwave resonators

May 5, 2020
Author(s)
Corey Rae H. McRae, Russell Lake, Junling Long, Mustafa Bal, Xian Wu, Battogtokh Jugdersuren, Thomas Metcalf, Xiao Liu, David P. Pappas
The investigation of two-level-state (TLS) loss in dielectric materials and interfaces remains at the forefront of materials research in superconducting quantum circuits. We demonstrate a method of TLS loss extraction of a thin film dielectric by measuring

Wavelength Standards

May 5, 2020
Author(s)
Alexander Kramida
The concept of wavelength standards is briefly explained on an undergraduate student level, and a guide to their current values and sources is given

Tuning interfacial Dzyaloshinskii-Moriya interactions in thin amorphous ferrimagnetic alloys

May 4, 2020
Author(s)
Yassine Quessab, Jun-Wen Xu, Chung Ting Ma, W. Zhou, Grant A. Riley, Justin Shaw, Hans Nembach, S. J. Poon, Andrew D. Kent
Skyrmions can be stabilized in magnetic systems with broken inversion symmetry and chiral interactions, such as Dzyaloshinskii-Moriya interactions (DMI). Further, compensation of magnetic moments in ferrimagnetic materials can significantly reduce magnetic
Displaying 751 - 775 of 2493
Was this page helpful?