Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 676 - 700 of 2493

Characterization of waveguide-integrated single-photon detectors using integratedphotonic structures

February 18, 2021
Author(s)
Sonia M. Buckley, Alexander N. Tait, Jeffrey T. Chiles, Adam N. McCaughan, Saeed Khan, Richard Mirin, Sae Woo Nam, Jeffrey M. Shainline
We show several techniques for using integrated-photonic waveguide structures to simultaneously characterize multiple waveguide-integrated superconducting-nanowire detectors with a single fiber input. We demonstrate structures for direct comparison of

A quantum enhanced search for dark matter axions

February 10, 2021
Author(s)
K M. Backes, Daniel A. Palken, S A. Kenany, Benjamin M. Brubaker, S B. Cahn, A Droster, Gene C. Hilton, Sumita Ghosh, H. Jackson, Steve K. Lamoreaux, A. F. Feder, Konrad Lehnert, S M. Lewis, Maxime Malnou, R H. Maruyama, N M. Rapidis, M Simanovskaia, Sukhman Singh, D H. Speller, I Urdinaran, Leila R. Vale, E. C. van Assendelft, K van Bibber, H. Wang

NIST Time and Frequency Bulletin

February 10, 2021
Author(s)
Kelsey A. Rodriguez
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.

Group-velocity dispersion engineering of tantalum pentoxide integrated photonics

February 9, 2021
Author(s)
Jennifer Black, Richelle H. Streater, Kieran F. LaMee, David Carlson, Su P. Yu, Scott Papp
Designing integrated photonics, especially to leverage Kerr-nonlinear optics, requires accurate and precise knowledge of refractive index across the visible to infrared spectral ranges. Tantalum pentoxide (Ta2O5, tantala) is an emerging material platform

National Institute of Standards and Technology Environmental Scan 2020

February 9, 2021
Author(s)
Heather Evans, Kristen K. Greene, William M. Healy, Elizabeth Hoffman, Kate Rimmer, Anna V. Sberegaeva, Neil M. Zimmerman
The 2020 National Institute of Standards and Technology Environmental Scan provides an analysis of key external factors that could impact NIST and the fulfillment of its mission in coming years. The analyses were conducted through four separate lenses

Hybrid InP and SiN integration of an octave-spanning frequency comb

February 2, 2021
Author(s)
Travis Briles, Su P. Yu, Lin Chang, Chao Xiang, Joel Guo, David Kinghorn, Gregory Moille, Kartik Srinivasan, John E. Bowers, Scott Papp
Implementing optical-frequency combs with integrated photonics will enable wider use of precision timing signals. Here, we explore the generation of an octave-span, Kerr-microresonator frequency comb, using hybrid integration of an InP distributed-feedback

Magneto-optical trapping using planar optics

January 29, 2021
Author(s)
William McGehee, Wenqi Zhu, Daniel Barker, Daron Westly, Alexander Yulaev, Nikolai Klimov, Amit Agrawal, Stephen Eckel, Vladimir Aksyuk, Jabez McClelland
Laser-cooled atoms are a key component of many calibration-free measurement platforms— including clocks, gyroscopes, and gravimeters—and are a promising technology for quantum networking and quantum computing. The optics and vacuum hardware required to

Microwaves in Quantum Computing

January 29, 2021
Author(s)
Joseph C. Bardin, Daniel Slichter, David J. Reilly
The growing field of quantum computing relies on a broad range of microwave technologies, and has spurred development of microwave devices and methods in new operating regimes. Here we review the use of microwave signals and systems in quantum computing

Quantum dot lasers - history and future prospects

January 29, 2021
Author(s)
Richard Mirin, John E. Bowers, Justin Norman
We describe the initial efforts to use molecular beam epitaxy to grow InAs quantum dots on GaAs via the Stranski-Krastanow transition. We then discuss the initial efforts to use these quantum dots to demonstrate quantum dot lasers. We discuss the

Measurement of the 27Al+ and 87Sr absolute optical frequencies

January 21, 2021
Author(s)
Holly Leopardi, Kyle Beloy, Tobias B. Bothwell, Samuel M. Brewer, Sarah L. Bromley, Jwo-Sy Chen, Scott Diddams, Robert J. Fasano, Youssef S. Hassan, David B. Hume, Dhruv Kedar, Colin J. Kennedy, Isaac H. Khader, David R. Leibrandt, Andrew D. Ludlow, William F. McGrew, William R. Milner, Daniele Nicolodi, Eric Oelker, Thomas E. Parker, John M. Robinson, Stefania Romisch, Jeffrey A. Sherman, Lindsay I. Sonderhouse, William C. Swann, Jian Yao, Jun Ye, Xiaogang Zhang, Tara M. Fortier
We perform absolute measurement of the 27Al+ single-ion and 87Sr neutral lattice clock frequencies at the National Institute of Standards and Technology and JILA at the University of Colorado against a global ensemble of primary frequency standards. Over

The Spectrum and Term Analysis of Singly-Ionized Manganese

January 13, 2021
Author(s)
Florence Liggins, J C. Pickering, Gillian Nave, Jacob W. Ward, Wan-U Lydia Tchang-Brillet
An extensive analysis of the Mn spectrum was carried out using high-resolution Fourier transform (FT) and grating spectroscopy of Mn-Ne and Mn-Ar hollow cathode discharge sources, over the range 82 nm to 5500 nm (1820 cm −1 to 121728 cm −1 ). Spectral

State Readout of a Trapped Ion Qubit Using a Trap-integrated Superconducting Photon Detector

January 6, 2021
Author(s)
Susanna L. Todaro, Varun Verma, Katherine C. McCormick, David T. Allcock, Richard Mirin, David J. Wineland, Sae Woo Nam, Andrew C. Wilson, Dietrich Leibfried, Daniel Slichter
We detect fluorescence photons emitted by a single $^9$Be$^+$ ion confined in a surface- electrode rf ion trap, using a superconducting nanowire single photon detector integrated directly into the trap. We achieve a qubit readout fidelity of 99.91(1) %

Complete collision data set for electrons scattering on molecular hydrogen and itsisotopologues: I. Fully vibrationally-resolved electronic excitation of H 2 (X 1 ? g + ).

January 1, 2021
Author(s)
Liam H. Scarlett, D Fursa, Mark C. Zammit, I Bray, Yuri Ralchenko, Kayla D. Davie
We present a comprehensive set of vibrationally-resolved cross sections for electron-impact electronic excitation of molecular hydrogen suitable for implementation in collisional-radiative models. The adiabatic-nuclei molecular convergent close-coupling

Measurement of mass of aerosol particles

January 1, 2021
Author(s)
Kevin J. Coakley, Robert Hagwood, Kensei Ehara, Nobuhiko FUKUSHIMA, Kittichote WORACHOTEKAMJORN, Naoko TAJIMA, Hiromu SAKURAI
An aerosol particle mass analyzer (APM) which classifies aerosol particles according to their mass has been developed. Mass distributions of aerosol particles can be measured by the APM combined with a particle counting device. Particle mass that can be
Displaying 676 - 700 of 2493
Was this page helpful?