Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 601 - 625 of 2503

High-Precision Hy-CI and E-Hy-CI studies of Atomic and Molecular Properties

September 29, 2021
Author(s)
James S. Sims, Maria Ruiz, Bholanath Padhy
This review presents a survey of the most important achievements in atomic and molecular calculations obtained with the Hylleraas-configuration interaction method (Hy-CI) and its extension the exponentially correlated Hylleraas-configuration interaction

Collective P-Wave Orbital Dynamics of Ultracold Fermions

September 28, 2021
Author(s)
Mikhail Mamaev, Peiru He, Thomas Bilitewski, Vijin Venu, Joseph Thywissen, Ana Maria Rey
We introduce a protocol to observe p-wave interactions in ultracold fermionic atoms loaded in a 3D optical lattice. Our scheme uses specific motionally excited band states to form an orbital subspace immune to band relaxation. A laser dressing is applied

Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning

September 24, 2021
Author(s)
MATTHEW SIMONS, Aly Artusio-Glimpse, chris holloway, Eric Imhof, Steven Jefferts, Robert Wyllie, Brian Sawyer, Thad Walker
We demonstrate the use of multiple atomic-level Rydberg-atom schemes for continuous frequency detection of radio-frequency (RF) fields. Resonant detection of RF fields by electromagnetically induced transparency and Autler-Townes (AT) splitting in Rydberg

Alternatives to aluminum gates for silicon quantum devices: Defects and strain

September 15, 2021
Author(s)
Ryan Stein, Zachary Barcikowski, Sujitra Pookpanratana, Joshua M. Pomeroy, Michael Stewart
Gate-defined quantum dots (QD) benefit from the use of small grain size metals for gates materials because it aids in shrinking the device dimensions. However, it is not clear what differences arise with respect to process-induced defect densities and

High-performance, compact optical standard

September 15, 2021
Author(s)
Zachary Newman, Vincent N. Maurice, Tara Fortier, Connor Fredrick, Scott Diddams, John Kitching, Matthew Hummon
We describe a high-performance, compact optical frequency standard based on a microfabricated Rb vapor cell and a low-noise, external cavity diode laser operating on the Rb two-photon transition at 778 nm. The optical standard achieves an instability of 1

Single-photon detection in the mid-infrared up to 10 micron wavelength using tungsten silicide superconducting nanowire detectors

September 14, 2021
Author(s)
Varun Verma, Adriana Lita, Yao Zhai, Heli C. Vora, Richard Mirin, Sae Woo Nam, Boris Korzh, Alex Walter, Ryan Briggs, Marco Colangelo, Emma Wollman, Andrew Beyer, Jason Allmaras, D. Zhu, Ekkehart Schmidt, A. G. Kozorezov, Matthew Shaw
We developed superconducting nanowire single-photon detectors (SNSPDs) based on tungsten silicide (WSi) that show saturated internal detection efficiency up to a wavelength of 10 um. These detectors are promising for applications in the mid-infrared

Pendellosung Interferometry Probes the Neutron Charge Radius, Lattice Dynamics, and Fifth Forces

September 10, 2021
Author(s)
Benjamin J. Heacock, Robert W. Haun, Michael G. Huber, Albert Henins, Robert C. Valdillez, Takuhiro Fujiie, Katsuya Hirota, Masaaki Kitaguchi, Hirohiko Shimizu, Takuya Hosobata, Masahiro Takeda, Yutaka Yamagata
Structure factors describe how incident radiation is scattered from materials such as silicon and germanium and characterize the physical interaction between the material and scattered particles. We used neutron Pendellösung interferometry to make

High-fidelity laser-free universal control of trapped ion qubits

September 8, 2021
Author(s)
Raghavendra Srinivas, Emanuel Knill, Robert Sutherland, Alexander T. Kwiatkowski, Hannah M. Knaack, Scott Glancy, David J. Wineland, Shaun C. Burd, Dietrich Leibfried, Andrew C. Wilson, David T. Allcock, Daniel Slichter
Universal control of multiple qubits—the ability to entangle qubits and to perform arbitrary individual qubit operations—is a fundamental resource for quantum computing, simulation and networking. Qubits realized in trapped atomic ions have shown the

Quantum-enhanced sensing of displacements and electric fields with large trapped-ion crystals

August 6, 2021
Author(s)
Kevin Gilmore, Matthew Affolter, Judith Jordan, Diego Barberena, Robert Lewis-Swan, Ana Maria Rey, John J. Bollinger
Developing the isolation and control of ultracold atomic systems to the level of single quanta has led to significant advances in quantum sensing, yet demonstrating a quantum advantage in real world applications by harnessing entanglement remains a core

Resource-efficient dissipative entanglement of two trapped-ion qubits

August 6, 2021
Author(s)
Daniel Cole, Stephen Erickson, Giorgio Zarantonello, Panyu Hou, Jenny Wu, Karl Horn, Daniel Slichter, Florentin Reiter, Christiane Koch, Dietrich Leibfried
We demonstrate a simplified method for generating an entangled state of two trapped-ion qubits. Our implementation produces its target state faster and with higher fidelity than previous demonstrations of dissipative entanglement generation, while
Displaying 601 - 625 of 2503
Was this page helpful?