Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 576 - 600 of 913

Micro-fabricated stylus ion trap

August 7, 2013
Author(s)
Kyle S. McKay, Christian L. Arrington, Ehren D. Baca, Jonathan J. Coleman, Yves Colombe, Patrick Finnegan, Dustin A. Hite, Andrew E. Hollowell, Robert Jordens, John D. Jost, Dietrich G. Leibfried, Adam M. Rowen, Ulrich J. Warring, David J. Wineland, David P. Pappas, Andrew C. Wilson
An electroformed, three-dimensional stylus Paul trap was designed to confine a single atomic ion for use as a sensor to probe the electric-field noise of proximate surfaces. The trap was microfabricated with the UV-LIGA technique to reduce the distance of

Electrically-protected resonant exchange qubits in triple quantum dots

July 31, 2013
Author(s)
Jacob M. Taylor, Vanita Srinivasa, Medford Jim
We present a modulated microwave approach for quantum computing with qubits comprising three spins in a triple quantum dot. This approach includes single- and two-qubit gates that are protected against low-frequency electrical noise, due to an operating

The Resonant Exchange Qubit

July 31, 2013
Author(s)
Jacob M. Taylor, Medford Jim, Johannes Beil, Emmanuel Rashba, H Lu, A. C. Gossard, C. M. Marcus
We introduce a solid-state qubit in which exchange interactions among confined electrons provide both the static longitudinal field and the oscillatory transverse field, allowing rapid and full qubit control via rf gate-voltage pulses. We demonstrate two

Mode reconstruction of a light field by multi-photon statistics

July 15, 2013
Author(s)
Elizabeth A. Goldschmidt, Fabrizio Piacentini, I. Ruo Berchera, Sergey V. Polyakov, Silke Peters, Stefan Kuck, Giorgio Brida, Ivo P. Degiovanni, Alan L. Migdall, Marco Genovese
Knowing the underlying number and structure of occupied modes of a light field plays a crucial role in minimizing loss and decoherence of quantum information. Typically, full characterization of the mode structure involves a series of several separate

Preparation of Non-equilibrium Nuclear Spin States in Double Quantum Dots

July 15, 2013
Author(s)
Jacob M. Taylor, Michael Gullans, Jacob J. Krich, Bertrand I. Halperin, M D. Lukin
We theoretically study the dynamic polarization of lattice nuclear spins in GaAs double quantum dots containing two electrons. We introduce a semiclassical model that allows to explore a wide range of parameter regimes in this system. We identify three

Direct Observation of Zitterbewegung in a Bose-Einstein condensate

July 3, 2013
Author(s)
Lindsay J. LeBlanc, Matthew Beeler, Karina Jimenez-Garcia, Abigail R. Perry, Seiji Sugawa, Ross Williams, Ian B. Spielman
Zitterbewegung, a force-free trembling motion first predicted for relativistic fermions like electrons, was an unexpected consequence of the Dirac equation's unification of quantum mechanics and special relativity. Though the oscillatory motion's large

Strong equivalence of reversible circuits is coNP-complete

July 2, 2013
Author(s)
Stephen P. Jordan
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding

Conditions for two-photon interference with coherent pulses

July 1, 2013
Author(s)
Yong-Su Kim, Oliver T. Slattery, Paulina Kuo, Xiao Tang
We report experiments on two-photon interference between temporally non-overlapping weak coherent pulses. While the single-photon interference is washed out, the two-photon interference shows a Hong-Ou-Mandel dip with visibility of 0.50±0.09, which shows

99.996% 12C films enriched and deposited in situ

June 28, 2013
Author(s)
Kevin J. Dwyer, Joshua M. Pomeroy, David S. Simons
A mass selected ion beam system is used to isotopically enrich and deposit thin films, which are measured to be 99.9961(4)% 12C. In solid state quantum information, isotopic enrichment of materials has allowed significant improvements in the coherence time

Photon-Number-Resolved Detection of Photon-Subtracted Thermal Light

June 18, 2013
Author(s)
Jingyun Fan, Yanhua (. Zhai, Francisco E. Becerra Chavez, Boris L. Glebov, Adriana E. Lita, Brice R. Calkins, Thomas Gerrits, Sae Woo Nam, Alan L. Migdall
We examine the photon statistics of photon-subtracted thermal light using photonnumberresolving detection. We show the photon-number distribution transforms from a Bose-Einstein distribution to a Poisson distribution as the number of photons subtracted

The Spin Hall Effect in a Quantum Gas

June 13, 2013
Author(s)
Matthew C. Beeler, Ross A. Williams, Karina K. Jimenez Garcia, Lindsay J. LeBlanc, Abigail R. Perry, Ian B. Spielman
Electronic properties like current flow are usually unaffected by the electron’s spin angular momentum, an internal degree of freedom present in quantum particles that can usually be either “up” or “down”. The spin-Hall effects (SHEs), first proposed 40

Nanosecond-scale timing jitter in transition edge sensors at telecom and visible wavelengths

June 10, 2013
Author(s)
Antia A. Lamas-Linares, Brice R. Calkins, Nathan A. Tomlin, Thomas Gerrits, Adriana Lita, Joern Beyer, Richard Mirin, Sae Woo Nam
Transition edge sensors (TES) have the highest reported efficiencies (> 98%) for single photon detection in the visible and near infrared. Experiments in quantum information and foundations of physics that rely on this efficiency have started incorporating

Efficient, low-noise, single-photon frequency conversion

June 9, 2013
Author(s)
Paulina S. Kuo, Jason S. Pelc, Oliver T. Slattery, Yong-Su Kim, M. M. Fejer, Xiao Tang
We demonstrate simultaneous low-noise and efficient frequency conversion in a periodically poled LiNbO3 waveguide with spectral filtering. We achieve >50% external conversion efficiency and 600 noise counts per second at peak conversion.

Non-equilibrium Fractional Quantum Hall state of light

June 3, 2013
Author(s)
Mohammad Hafezi, Jacob M. Taylor
We investigate the out-of-equilibrium dynamics in strongly interacting photonic systems. Specifically, we develop a method to investigate such system when they are externally driven with a coherent photonic field and evaluate relevant physical observables

Flat Frequency Response in the Electronic Measurement of the Boltzmann Constant

June 1, 2013
Author(s)
Jifeng Qu, Horst Rogalla, Yang Fu, Jianqiang Zhang, Alessio Pollarolo, Samuel Benz
A new quantum voltage calibrated Johnson noise thermometer (JNT) was developed at NIM to demonstrate the electrical approach that determines the Boltzmann constant k by comparing electrical and thermal noise power. A measurement with an integration period

Method for Ensuring Accurate AC Waveforms with Programmable Josephson Voltage Standards

June 1, 2013
Author(s)
Charles J. Burroughs, Alain Rufenacht, Samuel Benz, Paul Dresselhaus
The amplitudes of stepwise-approximated sine waves generated by programmable Josephson voltage standards (PJVS) are not intrinsically accurate because the transitions between the quantized voltages depend on numerous conditions. We have developed a method

Testing quantum expanders is co-QMA-complete

May 31, 2013
Author(s)
Yi-Kai Liu, Stephen P. Jordan, Pawel Wocjan, Adam Bookatz
A quantum expander is a unital quantum channel that is rapidly mixing, has only a few Kraus operators, and can be implemented efficiently on a quantum computer. We consider the problem of estimating the mixing time (i.e., the spectral gap) of a quantum

Practical Strategies for QKD Key Production

May 28, 2013
Author(s)
Alan Mink, Anastase Nakassis
We present the quantum key distribution (QKD) secure key ratio expression in a form that exposes the parameters that affect the Reconciliation (error correction) stage. Reconciliation is the least well understood in practical terms and is typically

Frequency Correlated Bi-Photon Spectroscopy using a Tunable Up-Conversion Detector

May 21, 2013
Author(s)
Oliver T. Slattery, Lijun Ma, Paulina S. Kuo, Yong-Su Kim, Xiao Tang
We demonstrated a scheme for frequency correlated bi-photon spectroscopy using a strongly non- degenerate down-conversion source and a tunable up-conversion detector. In this scheme, the spectral function at one wavelength range of a remote object can be
Displaying 576 - 600 of 913
Was this page helpful?