NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Strong equivalence of reversible circuits is coNP-complete
Published
Author(s)
Stephen P. Jordan
Abstract
It is well-known that deciding equivalence of logic circuits is a coNP-complete problem. As a corollary, the problem of deciding weak equivalence of reversible circuits, i.e. ignoring the ancilla bits, is also coNP-complete. The complexity of deciding strong equivalence, including the ancilla bits, is less obvious and may depend on gate set. Here we use Barrington's theorem to show that deciding strong equivalence of reversible circuits built from the Fredkin gate is coNP-complete. This implies coNP-completeness of deciding strong equivalence for other commonly used universal reversible gate sets, including any gate set that includes the the Toffoli or Fredkin gate.
Jordan, S.
(2013),
Strong equivalence of reversible circuits is coNP-complete, Quantum Information & Computation, [online], https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=913896
(Accessed October 16, 2025)