Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 476 - 500 of 2503

Chiral central charge from a single bulk wave function

April 28, 2022
Author(s)
Isaac H. Kim, Bowen Shi, Kohtaro Kato, Victor Albert
A (2+1)-dimensional gapped quantum many-body system can have a topologically protected energy current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral central charge c_-, a quantity associated with the

Update of Atomic Data for the First Three Spectra of Actinium

April 22, 2022
Author(s)
Alexander Kramida
Abstract: The present article describes a complete re-analysis of all published data on observed spectral lines and energy levels of the first three spectra of actinium (Ac I–III). In Ac I, three previously determined energy levels have been rejected, 12

High-fidelity indirect readout of trapped-ion hyperfine qubits

April 21, 2022
Author(s)
Stephen Erickson, Jenny Wu, Panyu Hou, Daniel Cole, Shawn Geller, Alexander Kwiatkowski, Scott Glancy, Emanuel Knill, Daniel Slichter, Andrew C. Wilson, Dietrich Leibfried
We propose and demonstrate a protocol for high-fidelity indirect readout of trapped ion hyperfine qubits, where the state of a 9Be+ qubit ion is mapped to a 25Mg+ readout ion using laser-driven Raman transitions. By partitioning the 9Be+ ground-state

Bipolar Waveform Synthesis with an Optically Driven Josephson Arbitrary Waveform Synthesizer

April 19, 2022
Author(s)
Justus Brevik, Dahyeon Lee, Anna Fox, Yiwei Peng, Akim Babenko, Joe Campbell, Paul Dresselhaus, Franklyn Quinlan, Samuel P. Benz
An array of Josephson junctions (JJs) was driven with photonically generated current pulses to synthesize a high-fidelity 1 kHz bipolar voltage waveform with a quantum-based amplitude that can be directly related to fundamental constants. A photodiode

Quantum computing hardware for HEP algorithms and sensing

April 19, 2022
Author(s)
Corey Rae McRae
Quantum information science harnesses the principles of quantum mechanics to realize computational algorithms with complexities vastly intractable by current computer platforms. Typical applications range from quantum chemistry to optimization problems and

Accelerated Green's function molecular dynamics

April 16, 2022
Author(s)
Vitor R. Coluci, Socrates de Oliveira Dantas Dantas, Vinod Tewary
A Green's function formalism has been applied to solve the equations of motion in classical molecular dynamics simulations. This formalism enables larger time scales to be probed for vibration processes in carbon nanomaterials. In Green's function

Inhomogenous Light Shifts of Coherent Population Trapping Resonances

April 13, 2022
Author(s)
Juniper Pollock, Valera Yudin, Alexey Taichenachev, Maxim Basalaev, D Kovalenko, Azure Hansen, John Kitching, William McGehee
Coherent population trapping (CPT) in atomic vapors using all-optical interrogation has enabled the miniaturization of microwave atomic clocks. Light shifts induced by the CPT driving elds can impact the spectral pro le of CPT resonances and are a common

A compact mid-infrared dual-comb spectrometer for outdoor spectroscopy

April 9, 2022
Author(s)
Gabriel Ycas, Fabrizio Giorgetta, Jacob T. Friedlein, Daniel Herman, Kevin Cossel, Esther Baumann, Nathan Newbury, Ian Coddington
This manuscript describes the design of a robust, mode-locked laser based, mid-infrared dual- comb spectrometer operating in the 3.1-µm to 4-µm spectral window. The design represents an improvement in signal-to-noise, system size, power consumption and

A pyroelectric detector-based method for low uncertainty spectral irradiance and radiance responsivity calibrations in the infrared using tunable lasers

April 4, 2022
Author(s)
Brian Alberding, John Woodward, Ping-Shine Shaw, Leonard Hanssen, Catherine Cooksey, Joseph P. Rice
The standard uncertainty of detector-based radiance and irradiance responsivity calibrations in the short-wave infrared (SWIR) traditionally has been limited to around 1 % or higher by the low spatial uniformity of detectors used to transfer the scale from

Generic character of charge and spin density waves in superconducting cuprates

April 4, 2022
Author(s)
Sangjun Lee, Edwin Huang, Thomas Johnson, Xuefei Guo, Ali Husain, Matteo Mitrano, Kannan Lu, Alexander Zakrzewski, Gilberto de la Pena, Yingying Peng, Hai Huang, Sang-Jun Lee, Hoyoung Jang, Jun-Sik Lee, Young Joe, W.Bertrand (Randy) Doriese, Paul Szypryt, Daniel Swetz, Songxue Chi, Adam Aczel, Gregory MacDougall, Steven Kivelson, Eduardo Fradkin, Peter Abbamonte
Charge density waves (CDWs) have been observed in nearly all families of copper-oxide superconductors. But the behavior of these phases across different families has been perplexing. In La-based cuprates, the CDW wavevector is an increasing function of

Disinfection of Respirators with Ultraviolet Radiation

March 25, 2022
Author(s)
Dianne L. Poster, Matthew Hardwick, C Cameron Miller, Michael A. Riley, W. W. Shanaka I. Rodrigo, Andras E. Vladar, John D. Wright, Christopher D. Zangmeister, Clarence Zarobila, Jeremy Starkweather, John Wynne, Jason Yilzarde
Data for interpreting virus inactivation on N95 face filtering respirators (FFRs) by ultraviolet (UV) radiation are important in developing UV strategies for N95 FFR disinfection and reuse for any situation, whether it be everyday practices, contingency

Models for an Ultraviolet-C Research and Development Consortium

March 25, 2022
Author(s)
Dianne L. Poster, C Cameron Miller, Yaw S. Obeng, John J. Kasianowicz, Michael T. Postek, Norman Horn, Troy Cowan, Richard Martinello
The development of an international, precompetitive, collaborative, ultraviolet (UV) research consortium is discussed as an opportunity to lay the groundwork for a new UV commercial industry and the supply chain to support this industry. History has

Recent Advances in Weyl Semimetal ( MnBi2Se4) and Axion Insulator (MnBi2Te4)

March 25, 2022
Author(s)
Sugata Chowdhury, Kevin Garrity, Francesca Tavazza
Extensive research is currently focused on 2D and 3D magnetic topological insulators (MTIs), as their many novel properties make them excellent candidates for applications in spintronics and quantum computing. Practical MTIs requires a combination of

Entropy transfer from a quantum particle to a classical coherent light field

March 23, 2022
Author(s)
John Bartolotta, Simon Jager, Jarrod Reilly, Matthew Norcia, James K. Thompson, Graeme Smith, Murray Holland
In the eld of light-matter interactions, it is often assumed that a classical light field that interacts with a quantum particle remains almost unchanged and thus contains nearly no information about the manipulated particles. To investigate the validity

Influence of Dimensionality on the Charge Density Wave Phase of 2H-TaSe2

March 23, 2022
Author(s)
Sugata Chowdhury, Albert Rigosi, Heather Hill, David Newell, Angela Hight Walker, Francesca Tavazza, Andrew Briggs
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe2) exhibit exciting behaviors at low temperatures including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to classify the

NIST Time and Frequency Bulletin

March 17, 2022
Author(s)
Kelsey Rodriguez
The Time and Frequency Bulletin provides information on performance of time scales and a variety of broadcasts (and related information) to users of the NIST services.
Displaying 476 - 500 of 2503
Was this page helpful?