Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 439

Kinetic inductance current sensor for visible to near-infrared wavelength transition-edge sensor readout

November 6, 2024
Author(s)
Paul Szypryt, Douglas Bennett, Ian Fogarty Florang, Joseph Fowler, Jiansong Gao, Andrea Giachero, Ruslan Hummatov, Adriana Lita, John Mates, Sae Woo Nam, Daniel Swetz, Joel Ullom, Michael Vissers, Jordan Wheeler
Single-photon detectors based on the superconducting transition-edge sensor are used in a number of visible to near-infrared applications, particularly for photon-number-resolving measurements in quantum information science. To be practical for large-scale

VHF Josephson Arbitrary Waveform Synthesizer

October 1, 2024
Author(s)
Jeremy Thomas, Nathan Flowers-Jacobs, Anna Fox, Akim Babenko, Samuel Benz, Paul Dresselhaus
We report on the design, fabrication, and measurement of a Very High Frequency band Josephson Arbitrary Waveform Synthesizer (VHF-JAWS) at frequencies up to 50.05 MHz. The VHF-JAWS chip is composed of a series array of 12810 Josephson junctions (JJs)

Measuring VHF Detector Linearity using a Quantum-Based Source

August 30, 2024
Author(s)
Jeremy Thomas, Nathan Flowers-Jacobs, Anna Fox, Alain Rufenacht, Paul Dresselhaus
We demonstrate the use of a Josephson Arbitrary Waveform Synthesizer (JAWS) for linearity measurements of two instruments: an RF power sensor and a fast ADC. The VHF-JAWS source consists of a chip with 12,810Josephson junctions located in a cryocooler and

Pulse Patterns for the Josephson Arbitrary Waveform Synthesizer

August 30, 2024
Author(s)
Nathan Flowers-Jacobs, Raegan Johnson, Jeremy Thomas, Alain Rufenacht, Anna Fox, Paul Dresselhaus, Samuel Benz
Δ-sigma algorithms are used to determine the desired sequence of quantum-based voltage pulses used by the Josephson Arbitrary Waveform Synthesizer (JAWS) to create calculable voltage waveforms. We describe typical settings used for synthesizing JAWS audio

Single-cryostat integration of the quantum anomalous Hall and Josephson effects

August 30, 2024
Author(s)
Jason Underwood, Linsey Rodenbach, Ngoc Thanh Mai Tran, Alireza Panna, Zachary Barcikowski, Molly Andersen, Peng Zhang, Lixuan Tai, Randolph Elmquist, Dean Jarrett, David Goldhaber-Gordon, David Newell, Albert Rigosi
By directly integrating a quantum anomalous Hall resistor (QAHR) and a programmable Josephson voltage standard (PJVS) into a single cryostat, we have implemented a quantum electrical reference that provides a realization of the volt, ohm, and ampere in

Optically-induced quantum transitions in direct-probed mesoscopic 2H-NbSe2 for prototypical bolometers

August 26, 2024
Author(s)
Kishan Jayanand, Gustavo Saenz, Sergiy Krylyuk, Albert Davydov, Goran Karapetrov, Zhonghe Liu, Weidong Zhou, Anupama Kaul
Superconducting transition-edge sensors (TES) have emerged as fascinating devices to detect broadband electromagnetic radiation with low thermal noise. Extensive investigation into novel TES device architectures using conventional elemental or compound

Characterizing a Frequency Converter Based on a Superconducting Coplanar Waveguide

July 30, 2024
Author(s)
Grant Giesbrecht, Nathan Flowers-Jacobs, Adam Sirois, Manuel Castellanos Beltran, Michael Vissers, JIANSONG GAO, Paul Dresselhaus, Taylor Barton
We present a technique for implementing a frequency doubler in NbTiN on silicon for operation in a cryogenic environment. The kinetic inductance of a superconducting coplanar waveguide is exploited for efficient frequency conversion, while the fabrication

Nanoscale Three-Dimensional Imaging of Integrated Circuits Using a Scanning Electron Microscope and Transition-Edge Sensor Spectrometer

April 30, 2024
Author(s)
Nathan Nakamura, Paul Szypryt, Amber Dagel, Bradley Alpert, Douglas Bennett, W.Bertrand (Randy) Doriese, Malcolm Durkin, Joseph Fowler, Dylan Fox, Johnathon Gard, Ryan Goodner, James Zachariah Harris, Gene C. Hilton, Edward Jimenez, Burke Kernen, Kurt Larson, Zachary H. Levine, Daniel McArthur, Kelsey Morgan, Galen O'Neil, Christine Pappas, Carl D. Reintsema, Dan Schmidt, Peter Schulz, Daniel Swetz, Kyle Thompson, Joel Ullom, Leila R. Vale, Courtenay Vaughan, Christopher Walker, Joel Weber, Jason Wheeler
X-ray nanotomography is a powerful tool for the characterization of nanoscale materials and structures, but it is difficult to implement due to the competing requirements of X-ray flux and spot size. Due to this constraint, state-of-the-art nanotomography

Effects of Non-Sinusoidal Current PhaseRelationships on Single Flux Quantum Circuits

March 1, 2024
Author(s)
Miranda Thompson, Manuel Castellanos Beltran, Pete Hopkins, Paul Dresselhaus, Samuel Benz
While the relationship between current and phase in a Josephson junction is canonically assumed to be sinusoidal, both the materials of the electrodes and the properties of the barrier will influence this relationship. This current-phase relationship (CΦR)

Superconducting Nanowire Single-Photon Detector Arrays for the Near- to Mid-Infrared

October 31, 2023
Author(s)
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
Superconducting Nanowire Single-Photon Detectors (SNSPDs) are excellent devices for the analysis of faint light from the ultraviolet to the mid-infrared. Recent developments push their broad wavelength bandwidth further into the mid-infrared towards 20 μm

Emergent ferromagnetism with superconductivity in Fe(Te,Se) van der Waals Josephson junctions

October 23, 2023
Author(s)
Gang Qiu, Hung-Yu Hu, Lunhui Hu, Huairuo Zhang, Chi-Yen Chen, Yanfeng Lyu, Christopher Eckberg, Peng Deng, Sergiy Krylyuk, Albert Davydov, Ruixing Zhang, Kang Wang
Ferromagnetism and superconductivity are two key ingredients for topological superconductors, which can serve as building blocks of fault-tolerant quantum computers. Adversely, ferromagnetism and superconductivity are typically also two hostile orderings

A tabletop x-ray tomography instrument for nanometer-scale imaging: demonstration of the 1,000-element transition-edge sensor subarray

August 1, 2023
Author(s)
Paul Szypryt, Nathan J. Nakamura, Dan Becker, Douglas Bennett, Amber L. Dagel, W.Bertrand (Randy) Doriese, Joseph Fowler, Johnathon Gard, J. Zachariah Harris, Gene C. Hilton, Jozsef Imrek, Edward S. Jimenez, Kurt W. Larson, Zachary H. Levine, John Mates, Daniel McArthur, Luis Miaja Avila, Kelsey Morgan, Galen O'Neil, Nathan Ortiz, Christine G. Pappas, Dan Schmidt, Kyle R. Thompson, Joel Ullom, Leila R. Vale, Michael Vissers, Christopher Walker, Joel Weber, Abigail Wessels, Jason W. Wheeler, Daniel Swetz
We report on the 1,000-element transition-edge sensor (TES) x-ray spectrometer implementation of the TOMographic Circuit Analysis Tool (TOMCAT). TOMCAT combines a high spatial resolution scanning electron microscope (SEM) with a highly efficient and

Single Flux Quantum-Based Digital Control of Superconducting Qubits in a Multi-Chip Module

June 24, 2023
Author(s)
Chuanhong Liu, Robert McDermott, Britton Plourde, Andrew Ballard, Jonathan DuBois, Pete Hopkins, David Olaya, John Biesecker, Samuel P. Benz, Dan Schmidt, Joel Ullom
The single flux quantum (SFQ) digital superconducting logic family has been proposed as a practical approach for controlling next-generation superconducting qubit arrays with more favorable scaling properties compared to conventional microwave-based

Trap-Integrated Superconducting Nanowire Single-Photon Detectors with Improved RF Tolerance for Trapped-Ion Qubit State Readout

April 24, 2023
Author(s)
Benedikt Hampel, Daniel Slichter, Dietrich Leibfried, Richard Mirin, Sae Woo Nam, Varun Verma
State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong radio frequency (rf) electric fields used for trapping can impact detector performance. Here, we report on

Symmetric time-division-multiplexed SQUID readout with two-layer switches for future TES observatories

April 4, 2023
Author(s)
Malcolm Durkin, Scott Backhaus, Simon Bandler, James Chervenak, Ed Denison, W.Bertrand (Randy) Doriese, Johnathon Gard, Gene C. Hilton, Richard Lew, Tammy Lucas, Carl D. Reintsema, Dan Schmidt, Stephen Smith, Joel Ullom, Leila R. Vale, Michael Vissers, Nicholas Wakeham
Time-division multiplexing (TDM) of transition-edge-sensor (TES) microcalorimeters is being developed as the readout tech-nology for the Athena X-ray integral field unit (X-IFU) and is under consideration for future TES-bolometer missions like CMB-S4. We

Nb/a-Si/Nb-junction Josephson-based arbitrary waveform synthesizers for quantum information

February 24, 2023
Author(s)
David Olaya, John Biesecker, Manuel Castellanos Beltran, Adam Sirois, Paul Dresselhaus, Samuel P. Benz, Pete Hopkins, Logan Howe
We demonstrate Josephson arbitrary waveform synthesizers (JAWS) with increased operating temperature range for temperatures below 4 K. These JAWS synthesizers were fabricated with externally-shunted Nb/a-Si/Nb junctions whose critical current exhibits
Displaying 1 - 25 of 439