Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 870

Comparison of Mg-based liquid metal ion sources for scalable focused-ion-implantation doping of GaN

April 18, 2024
Aaron Katzenmeyer, Michael Titze, Sam Frisone, Tony Ohlhausen, Anthony Flores, Deanna Campbell, Bingjun Li, Yongqiang Wang, Jung Han, Edward Bielejec, Rachel Goldman
We compare the suitability of various magnesium-based liquid metal alloy ion sources (LMAIS) for scalable focused-ion-beam (FIB) implantation doping of GaN. We consider GaMg, MgSO4•7H2O, MgZn, AlMg, and AuMgSi alloys. Although issues of oxidation (GaMg)

Single-particle approach to many-body relaxation dynamics

February 26, 2024
Garnett W. Bryant, Marta Pelc, David Dams, Abhishek Ghosh, Miriam Kosik, Marvin Muller, Carsten Rockstuhl, Andres Ayuela, Karolina Slowik
This study addresses the challenge of modeling relaxation dynamics in quantum many-body systems, specifically focusing on electrons in graphene nanoflakes. While quantum many-body techniques effectively describe dynamics up to a few particles, these

Multi-scale alignment to buried atom-scale devices using Kelvin probe force microscopy

February 24, 2024
Pradeep Namboodiri, Jonathan Wyrick, Gheorghe Stan, Xiqiao Wang, Fan Fei, Ranjit Kashid, Scott Schmucker, Richard Kasica, Bryan Barnes, Michael Stewart, Richard M. Silver
Fabrication of quantum devices by atomic scale patterning with a Scanning Tunneling Microscope (STM) has led to the development of single/few atom transistors, few-donor/quantum dot devices for spin manipulation and arrayed few-donor devices for analog

Optical frequency division & pulse synchronization using a photonic-crystal microcomb injected chip-scale mode-locked laser

February 15, 2024
Chinmay Shirpurkar, Jizhao Zang, Ricardo Bustos-Ramirez, David Carlson, Travis Briles, Lawrence R. Trask, Srinivas V. Pericherla, Di Huang, Ashish Bhardwaj, Gloria E. Hoefler, Scott Papp, Peter J. Delfyett
A mode-locked laser photonic integrated circuit with a repetition rate of 10 GHz is optically synchronized to a tantalabased photonic crystal resonator comb with a repetition rate of 200 GHz. The synchronization is achieved through regenerative harmonic

Advancing Measurement Science for Microelectronics: CHIPS R&D Metrology Program

February 13, 2024
Marla L. Dowell, Hannah Brown, Gretchen Greene, Paul D. Hale, Brian Hoskins, Sarah Hughes, Bob R. Keller, R Joseph Kline, June W. Lau, Jeff Shainline
The CHIPS and Science Act of 2022 called for NIST to "carry out a microelectronics research program to enable advances and breakthroughs....that will accelerate the underlying R&D for metrology of next-generation microelectronics and ensure the


December 8, 2023
Elisabeth Mansfield, Bryan Barnes, R Joseph Kline, Andras E. Vladar, Yaw S. Obeng, Albert Davydov
The Metrology Chapter identifies emerging measurement challenges from devices, systems, and integration of new materials in the semiconductor industry and describes research and development pathways for meeting them. This includes but not limited to

Visualizing the merger of tunably coupled graphene quantum dots

December 6, 2023
Daniel Walkup, Fereshte Ghahari, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Nikolai Zhitenev, Joseph A. Stroscio
Coupled quantum dots have been realized in a wide variety of physical systems and have attracted interest for many different applications. Here, we examine novel graphene quantum dots in backgated devices on hBN, and visualize their merger using scanning

Superconducting Nanowire Single-Photon Detector Arrays for the Near- to Mid-Infrared

October 31, 2023
Benedikt Hampel, Richard Mirin, Sae Woo Nam, Varun Verma
Superconducting Nanowire Single-Photon Detectors (SNSPDs) are excellent devices for the analysis of faint light from the ultraviolet to the mid-infrared. Recent developments push their broad wavelength bandwidth further into the mid-infrared towards 20 μm

Electrostatic modulation of thermoelectric transport properties of 2H-MoTe2

September 6, 2023
Tianhui Zhu, Sree Sourav Das, Safoura Nayebsadeghi, Fajana Tonni, Sergiy Krylyuk, Costel Constantin, Keivan Esfarjani, Albert Davydov, Mona Zebarjadi
Two-dimensional layered transition metal dichalcogenides are potential thermoelectric candidates with application in on-chip integrated nanoscale cooling and power generation. Here, we report a comprehensive experimental and theoretical study on the in

Federal perspective on critical research issues in nanoEHS

August 31, 2023
Janet Carter, Sri Nadadur, Rhema Bjorkland, William Boyes, Chuck Geraci, Vincent A. Hackley, John Howard, Alan Kennedy, Igor Linkov, Joanna Matheson, Holly Mortensen, Custudio Muinga, Elijah Petersen, Nora Savage, Stacey Standridge, Trey Thomas, Benjamin Trump
This article discusses critical issues and opportunities going forward in nanotechnology environmental, health, and safety (nanoEHS) research from the perspective of Federal Government agency participants in the U.S. National Nanotechnology Initiative (NNI

Fabrication of Specimens for Atom Probe Tomography using a Combined Gallium and Neon Focused Ion Beam Milling Approach

August 16, 2023
Frances Allen, Paul Blanchard, David Pappas, Russell Lake, Deying Xia, John Notte, Ruopeng Zhang, Andrew Minor, Norman A. Sanford
We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip shaping after conventional annulus milling using gallium ions. This dual-ion

Evaluating the thermal performance of perovskite SrSnO3 field effect transistors

July 13, 2023
Bivek Bista, Prafful Golani, Fengdeng Liu, Tristan Truttmann, Georges Pavlidis, Andrea Centrone, Bharat Jalan, Steven Koester
Given the ever increasing, global electricity consumption, improving the efficiency and reliability of high-power electronics is of paramount importance. Ultra-wide band gap (> 3.4 eV) semiconductors have shown the potential to be used in the next

Operando photoelectron spectromicroscopy of nanodevices: Correlating the surface chemistry and transport in SnO2 nanowire chemiresistors

June 29, 2023
Andrei Kolmakov, Trey Diulus, Kurt D. Benkstein, Stephen Semancik, Majid Kazemian, Matteo Amati, Maya Kiskinova, Luca Gregoratti
With size reduction of active elements in microelectronics to tens of nanometers and below, the effect of surface and interface properties on overall device performance becomes crucial. High resolution spectroscopic and imaging techniques provide a

Impact of fin aspect ratio on enhancement of external quantum efficiency in single AlGaN fin light-emitting diodes pixels

June 26, 2023
Babak Nikoobakht, Yuqin Zong, Okan Koksal, Amit Agrawal, Christopher B. Montgomery, Jacob Leach, Michael Shur
Previously, we showed within a sub-micron fin shape heterojunction, as current density increases, the non-radiative Auger recombination saturates mediated by the extension of the depletion region into the fin, resulting in a droop-free behavior. In this

International Interlaboratory Comparison (ILC) of Thermogravimet-ric (TGA) Measurements of Graphene Materials

March 14, 2023
Pei Lay Yap, Farzaneh Farivar, Victoria Coleman, Asa Jamting, Sam Gnaniah, Elisabeth Mansfield, Cheng Pu, Sandra Marcela Landi, Marcus Vinicius David, Emmanuel Flahaut, Paul Finnie, Mary Gallerneault, M. Dominque Locatelli, Sebastien Jacquinot, Carltoa Gray Slough, Jan Hanss, Jorg Menzel, Stefen Schmolzer, Lingling Ren, Andrew Pollard, Dusan Losic
Graphene materials are strongly emerging from academic research labs into industrial sectors with many developed products on market. Characterizations and quality control of graphene materials are very critical with an urgent demand for reliable
Displaying 1 - 25 of 870