Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

NIST Authors in Bold

Displaying 1 - 25 of 772

Influence of Dimensionality on the Charge Density Wave Phase of 2H-TaSe2

March 23, 2022
Sugata Chowdhury, Albert Rigosi, Heather Hill, David B. Newell, Angela R. Hight Walker, Francesca Tavazza, Andrew Briggs
Metallic transition metal dichalcogenides like tantalum diselenide (TaSe2) exhibit exciting behaviors at low temperatures including the emergence of charge density wave (CDW) states. In this work, density functional theory (DFT) is used to classify the

Strong coupling between a topological insulator and a III-V heterostructure at terahertz frequency

March 8, 2022
Garnett W. Bryant, D. Quang To, Zhengtianye Wang, Q. Dai Ho, Ruiqi Hu, Wilder Acuna, Yongchen Liu, Anderson Janotti, Joshua Zide, Stephanie Law, Matthew Doty
We probe theoretically the emergence of strong coupling in a system consisting of a topological insulator (TI) and a III-V heterostructure using a numerical approach based on the scattering matrix formalism. Speci cally, we investigate the interactions

Impacts of ingested MWCNT-Embedded nanocomposites in Japanese medaka (Oryzias latipes)

February 26, 2022
Melissa Chernick, Alan Kennedy, Treye Thomas, Keana Scott, Christine Ogilvie Hendren, Mark Wiesner, David Hinton
Polymer nanocomposites combine the versatile, lightweight characteristics of polymers with the properties of nanomaterials. Polyethylene terephthalate glycol (PETG) is commonly used in polymer additive manufacturing due to its controllable transparency

Full-Stokes polarimetry for visible light enabled by an all-dielectric metasurface

February 20, 2022
Yongze Ren, Shihao Guo, Wenqi Zhu, Pengcheng Huo, Sijia Liu, Song Zhang, Peng Chen, Lu Chen, Henri Lezec, Amit Agrawal, Yanqing Lu, Ting Xu
Decoding arbitrary polarization information from an optical field has triggered unprecedented endeavors in polarization imaging, remote sensing and information processing. Therefore, developing a polarization detection device with full on-chip integration

Detection of individual spin species via frequency-modulated charge pumping

February 2, 2022
James Ashton, Mark Anders, Jason Ryan
We utilize the recently developed frequency-modulated charge pumping technique to detect a single charge per cycle, which strongly suggests a single Si/SiO2 interface trap. This demonstration in sub-micron MOSFETs, in which scaling of the gate oxide yields

Model for the Bipolar Amplification Effect

December 10, 2021
James Ashton, Stephen Moxim, Ashton Purcell, Patrick Lenahan, Jason Ryan
We present a model based on Fitzgerald-Grove surface recombination for the bipolar amplification effect (BAE) measurement, which is widely utilized in electrically detected magnetic resonance (EDMR) to measure reliability and performance-limiting interface

Computational scanning tunneling microscope image database

December 5, 2021
Kamal Choudhary, Kevin Garrity, Charles Camp, Sergei Kalinin, Rama Vasudevan, Maxim Ziatdinov, Francesca Tavazza
We introduce the systematic database of scanning tunneling microscope (STM) images obtained using density functional theory (DFT) for two-dimensional (2D) materials, calculated using the Tersoff-Hamann method. It currently contains data for 716 exfoliable

Opportunities in electrically tunable 2D materials beyond graphene: Recent progress and future outlook

November 30, 2021
Tom Vincent, Jiayun liang, simrjit singh, eli castanon, xiaotian zhang, deep jariwala, olga kazakova, zakaria al-balushi, Amber McCreary
The interest in two-dimensional and layered materials continues to expand, driven by the compelling properties of individual atomic layers that can be stacked and/or twisted into synthetic heterostructures. The plethora of electronic properties as well as

Generation of perfect vortex beams by dielectric geometric metasurface for visible light

October 31, 2021
Qianwei Zhou, Mingze Liu, Wenqi Zhu, Lu Chen, Yongze Ren, Henri Lezec, Yanqing Lu, Ting Xu, Amit Agrawal
Perfect vortex beam (PVB) is a propagating optical field carrying orbital angular momentum (OAM) with a radial intensity profile that is independent of topological charge. PVB can be generated through the Fourier transform of a Bessel-Gaussian beam, which

Spatially Resolved Potential and Li-Ion Distributions Reveal Performance-Limiting Regions in Solid-State Batteries

October 19, 2021
Elliot Fuller, Evgheni Strelcov, Jamie Weaver, Michael Swift, Joshua Sugar, Andrei Kolmakov, Nikolai Zhitenev, Jabez J. McClelland, Yue Qi, Joseph Dura, Alec Talin
The performance of solid-state electrochemical systems is intimately tied to the potential and lithium distributions across electrolyte–electrode junctions that give rise to interface impedance. Here, we combine two operando methods, Kelvin probe force

Thermal Analysis of Nanoparticles: Methods, Kinetics, and Recent Advances

October 13, 2021
Elisabeth Mansfield, Mark Banash
This chapter provides an overview of the thermal techniques available to study nanoparticles, with particular attention to thermogravimetric analysis, calorimetry and differential scanning calorimetry. The advantages of thermal analysis for nanoparticle

Microwave characterization of graphene inks

October 11, 2021
Jan Obrzut, Ana C. M. Moraes
Systematic charge transport characterization of solution-processed graphene inks using ethyl cellulose polymer as a binder/stabilizer, showed graphene patterns with high mobility ( 160 cm2 V-1 s-1), low energy gap, thermally activated charge transport and

Parametric optimization of an air-liquid interface system for flow through inhalation exposure to nanoparticles: assessing dosimetry and intracellular uptake of CeO2 nanoparticles

September 29, 2021
Lars Leibrock, Harald Jungnickel, Jutta Tentschert, Aaron Katz, Blaza Toman, Elijah Petersen, Frank Bierkandt, Ajay V. Singh, Peter Laux, Andreas Luch
Air-liquid interface (ALI) systems have been widely used in recent years to investigate the inhalation toxicity of many gaseous compounds, chemicals, and nanomaterials and represent an emerging and promising in vitro method to supplement or ultimately
Displaying 1 - 25 of 772