An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Sylvia Lewin, Corey Frank, Sheng Ran, Johnpierre Paglione, Nicholas Butch
ranium ditelluride (UTe2) is recognized as a host material to unconventional spin-triplet superconductivity, but it also exhibits a wealth of additional unusual behavior at high magnetic fields. One of the most prominent signatures of the unconventional
Anjana Samarakoon, J. Strempfer, Junjie Zhang, Feng Ye, Yiming Qiu, J.-W. Kim, H. Zheng, S. Rosenkranz, M. Norman, J. Mitchell, D. Phelan
Quantum materials display rich and myriad types of magnetic, electronic, and structural ordering, often with these ordering modes either competing with one another or 'intertwining,' that is, reinforcing one another. Low dimensional quantum materials
Bakhrom Oripov, Dana Rampini, Jason Allmaras, Matt Shaw, Sae Woo Nam, Boris Korzh, Adam McCaughan
For the past 50 years, superconducting detectors have offered exceptional sensitivity and speed for detecting faint electromagnetic signals in a wide range of applications. These detectors operate at very low temperatures and generate a minimum of excess
We experimentally and theoretically investigate the anisotropic speed of sound of an atomic superfluid (SF) Bose-Einstein condensate in a 1D optical lattice. Because the speed of sound derives from the superfluid density, implying that this density is
Shamiul Alam, Dana Rampini, Bakhrom Oripov, Adam McCaughan, Ahmedullah Aziz
Superconducting electronics are among the most promising alternatives to conventional CMOS technology, thanks to the ultra-fast speed and ultra-high energy efficiency of the superconducting devices. Having a cryogenic control processor is also a crucial
Dominick Scaletta, Swapnil Mhatre, Ngoc Thanh Mai Tran, Cheng Hsueh Yang, Heather Hill, Yanfei Yang, Linli Meng, Alireza Panna, Shamith Payagala, Randolph Elmquist, Dean G. Jarrett, David B. Newell, Albert Rigosi
Marlou Slot, Yulia Maximenko, Paul M. Haney, Sungmin Kim, Daniel Walkup, Evgheni Strelcov, En-Min Shih, Dilek Yildiz, Steven R. Blankenship, Kenji Watanabe, Takashi Taniguchi, Yafis Barlas, Nikolai Zhitenev, Fereshte Ghahari Kermani, Joseph A. Stroscio
Topological properties that underlie the rich emergent phases of moiré quantum matter (MQM) result from the eigenstate geometry of the moiré Hamiltonian. The eigenstate geometry involves the Berry curvature and the less known quantum metric. Most studies
Yuankun Lin, Noah Hurley, Steve Kamau, Evan Hathaway, Yan Jiang, Roberto Gonzalez Rodriguez, Sinto Varghese, Sergiy Krylyuk, Albert Davydov, Yuanxi Wang, Anupama Kaul, Jingbiao Cui
Herein, photoluminescence (PL) and fluorescence lifetime imaging (FLIM) in multilayer MoSe2 are studied. Strain-activated stimulated emission via defect levels in multilayer MoSe2 under laser excitation is observed, for the first time in defects of
Thinh Bui, Mark-Alexander Henn, Weston L. Tew, Megan Catterton, Solomon I. Woods
Advances in instrumentation and tracer materials are still required to enable sensitive and accurate 3D temperature monitoring by magnetic particle imaging. We have developed a magnetic particle imaging instrument to observe temperature variations using
Dipanjan Saha, Dacen Waters, Ching-Chen Yeh, Swapnil Mhatre, Ngoc Thanh Mai Tran, Heather Hill, Kenji Watanabe, Takashi Taniguchi, Matthew Yankowitz, David B. Newell, Albert Rigosi
E. Smith, J. Dudemaine, B. Placke, R. Schafer, D. Yahne, T. DeLazzer, A. Fitterman, J. Beare, Jonathan N. Gaudet, C.R.C. Buhariwalla, Andrey Podlesnyak, Guangyong Xu, J. Clancy, R. Movshovich, G. Luke, K. Ross, R. Moessner, O. Benton, A. Bianchi, B. Gaulin
The pyrochlore magnet Ce2Zr2O7 has attracted much attention as a quantum spin ice candidate whose novelty derives in part from the dipolar-octupolar nature of the Ce3+ pseudospin-1/2 degrees of freedom it possesses. We report heat capacity measurements on
Bruce D. Ravel, Trevor Tyson, Han Zhang, Sizhan Liu, SANJIT GHOSE, U.J. Idehenre, Yury Barnakov, S.A. Basun, D.R. Evans
Nanoscale BaTiO3 particles (10 nm) prepared by ball-milling a mixture of oleic acid and heptane have been reported to have an electric polarization several times larger than that for bulk BaTiO3. In this work, detailed local, intermediate, and long-range
This is the report of a hybrid working group meeting held on April 25, 2023, at the National Institute of Standards and Technology (NIST) in Boulder, CO. The working group was focused on extreme ultraviolet lithography (EUVL) research, development, and
Melissa Henderson, Benjamin Heacock, Markus Bleuel, David Cory, Colin Heikes, Michael G. Huber, Jeffery Krzywon, Olivier Nahman-Levesque, Graeme Luke, M Pula, Dusan Sarenac, Kirill Zhernenkov, Dmitry Pushin
Magnetic skyrmions are localized non-collinear spin textures, characterized by an integer topo-logical charge. Their nanometric size and topological protection gives rise to unique dynamics and emergent electromagnetic phenomena, ideal for spintronic
Ganga Neupane, Andrew Winchester, Nicolas Marquez Peraca, David Albin, Joel Duenow, Matthew Reese, Sujitra Pookpanratana, Susanna Thon, Behrang Hamadani
Clear visualization and understanding of luminescence properties of grain interiors and grain boundaries in polycrystalline thin-film photovoltaic materials are crucial to achieving high-performance solar cells. Luminescence-based measurements, for example
Karina Bzheumikhova, John Vinson, Ranier Unterumsberger, Malte Wansleben, Claudia Zech, Kai Schuler, Yves Kayser, Philipp Honicke, Burkhard Beckhoff
Using well-calibrated experimental data we demonstrate the applicability of theoretical X-ray absorption spectroscopy (XAS) as well as X-ray emission spectroscopy (XES) calculations for titanium (Ti), titanium oxide (TiO), and titanium dioxide (TiO2) at
Bin Gao, Tong Chen, Chien-Lung Huang, Yiming Qiu, Guangyong Xu, Jesse Liebman, Lebing Chen, Matthew B. Stone, Erxi Feng, Huibo Cao, Xiaoping Wang, Xianghan Xu, Sang-Wook Cheong, Stephen Winter, Pengcheng Dai
A spin-1/2 triangular-lattice antiferromagnet is a prototypical frustrated quantum magnet, which exhibits remarkable quantum many-body effects that arise from the synergy between geometric spin frustration and quantum fluctuations. It can host quantum
Ian Bell, Jacob Leachman, Albert Rigosi, Heather Hill
The extreme conditions have limited the availability and accuracy of experimental thermophys- ical property measurements for cryogens, particularly transport properties. Traditional scaling techniques such as corresponding states theory have long been
Florian Theuss, Avi Shragai, Gael Grissonnanche, Ian Hayes, Shanta Saha, Yun Eo, Alonso Suaraz, Tatsuya Shishidou, Nicholas Butch, Johnpierre Paglione, B. Ramshaw
The microscopic mechanism of Cooper pairing in a superconductor leaves its fingerprint on the symmetry of the order parameter. UTe2 has been inferred to have a multi-component order parameter that entails exotic effects like time reversal symmetry breaking
Dean G. Jarrett, Ching-Chen Yeh, Shamith Payagala, Alireza Panna, Yanfei Yang, Linli Meng, Swapnil Mhatre, Ngoc Thanh Mai Tran, Heather Hill, Dipanjan Saha, Randolph Elmquist, David B. Newell, Albert Rigosi
Brenden R. Ortiz, Paul M. Sarte, Alon H. Avidor, Aurland Hay, Eric Kenney, Alexander I. Kolesnikov, Daniel M. Pajerowski, Adam A. Aczel, Keith M. Taddei, Craig Brown, Chennan Wang, Michael J. Graf, Ram Seshadri, Leon Balents, Stephen Wilson
The realization of spin liquid states born from the near-critical regime of the triangular lattice Hubbard model in inorganic materials remains a long-standing challenge, where weak spin-orbit coupling and other small perturbations often induce
Aidan Zabalo, Justin Wilson, Michael Gullans, Romain Vasseur, Sarang Goplakrishnan, David Huse, Jed Pixley
We consider a model of monitored quantum dynamics with quenched spatial randomness: specifically, random quantum circuits with spatially varying measurement rates. These circuits undergo a measurement-induced phase transition (MIPT) in their entanglement