NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Infinite-randomness criticality in monitored quantum dynamics with static disorder
Published
Author(s)
Aidan Zabalo, Justin Wilson, Michael Gullans, Romain Vasseur, Sarang Goplakrishnan, David Huse, Jed Pixley
Abstract
We consider a model of monitored quantum dynamics with quenched spatial randomness: specifically, random quantum circuits with spatially varying measurement rates. These circuits undergo a measurement-induced phase transition (MIPT) in their entanglement structure, but the nature of the critical point differs drastically from the case with constant measurement rate. In particular, at the critical measurement rate, we find that the entanglement of a subsystem of size l scales as S\sqrtl}; moreover, the dynamical critical exponent z =\infty. The MIPT is flanked by Griffiths phases with continuously varying dynamical exponents. We argue for this infinite-randomness scenario on general grounds and present numerical evidence that it captures some features of the universal criti- cal properties of MIPT using large-scale simulations of Clifford circuits. These findings demonstrate that the relevance and irrelevance of perturbations to the MIPT can naturally be interpreted using a powerful heuristic known as the Harris criterion.
Zabalo, A.
, Wilson, J.
, Gullans, M.
, Vasseur, R.
, Goplakrishnan, S.
, Huse, D.
and Pixley, J.
(2023),
Infinite-randomness criticality in monitored quantum dynamics with static disorder, Physical Review B, [online], https://doi.org/10.1103/PhysRevB.107.L220204, https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=935724
(Accessed October 9, 2025)