Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 626 - 650 of 1240

Energy Renormalization to Coarse-Graining of the Dynamics of a Model Glass-Forming Liquid

February 5, 2018
Author(s)
Wenjie Xia, Jake Song, Nitin Hansoge, Frederick R. Phelan Jr., Sinan Keten, Jack F. Douglas
Soft condensed matters characteristically exhibit a strong temperature dependence of relaxation properties due to glass formation, but currently no effective temperature transferable coarse- graining method exists that allows for the prediction of their

STM patterned nanowire measurements using photolithographically defined implants in Si(100)

January 29, 2018
Author(s)
Aruna N. Ramanayaka, Hyun Soo Kim, Ke Tang, Xiqiao Wang, Richard M. Silver, Michael D. Stewart, Joshua M. Pomeroy
Using photolithographically defined implant wires for electrical connections, we demonstrate measurement of a scanning tunneling microscope (STM) patterned nanoscale electronic device on Si(100), eliminating the onerous alignment procedures and electron

Ultralow power artificial synapses using nanotextured magnetic Josephson junctions

January 28, 2018
Author(s)
Michael L. Schneider, Christine A. Donnelly, Stephen E. Russek, Burm Baek, Matthew R. Pufall, Peter F. Hopkins, Paul D. Dresselhaus, Samuel P. Benz, William H. Rippard
Neuromorphic computing is a promising avenue to dramatically improve the efficiency of certain computational tasks, such as perception and decision making. Neuromorphic systems are currently being developed for critical applications ranging from self

Quantifying Atom-scale Dopant Movement and Electrical Activation in Si:P Monolayers

January 26, 2018
Author(s)
Xiqiao Wang, Joseph A. Hagmann, Pradeep N. Namboodiri, Jonathan E. Wyrick, Kai Li, Roy E. Murray, Frederick Meisenkothen, Alline F. Myers, Michael D. Stewart, Richard M. Silver
Doped semiconductor structures with ultra-sharp dopant confinement, minimal lattice defects, and high carrier concentrations are essential attributes in the development of both ultra- scaled conventional semiconductor devices and emerging all-silicon

Weak localization thickness measurements of embedded phosphorus delta layers in silicon produced by PH3 dosing

January 23, 2018
Author(s)
Joseph A. Hagmann, Xiqiao Wang, Pradeep N. Namboodiri, Jonathan E. Wyrick, Roy E. Murray, Michael D. Stewart, Richard M. Silver
The key building blocks for devices based on the deterministic placement of dopants in silicon are the formation of phosphorus dopant monolayers and the overgrowth of high quality crystalline Si. Lithographically defined dopant delta-layers can be formed

AC Signal Characterization for Optimization of a CMOS Single Electron Pump

January 8, 2018
Author(s)
Roy E. Murray, Justin K. Perron, Michael D. Stewart, Neil M. Zimmerman
Pumping single electrons at a set rate is being widely pursued as an electrical current standard. Much work has been done on pumping using a single AC signal, but using multiple coordinated AC signals may help lower error rates. Whether pumping with one or

Noncentrosymmetric Superconductor BeAu

January 4, 2018
Author(s)
A. Amon, E. Svanidze, R. Cardoso-Gil, M. N. Wilson, H. Rosner, M. Bobnar, W. Schnelle, Jeffrey W. Lynn, R. Gumeniuk, C. Hennig, G. M. Luke, H. Borrmann, A. Leithe-Jasper, Yu Grin
In noncentrosymmetric superconductors mixed spin-singlet and spin-triplet pairing can occur. In this work, physical properties of the noncentrosymmetric superconductor, BeAu, were investigated. It was established that BeAu undergoes a structural phase

Quantum Phases of Two-Component Bosons with Spin-Orbit Coupling in Optical Lattices

December 26, 2017
Author(s)
Ian B. Spielman, Carlos S? de Melo, Daisuke Yamamoto
Ultracold bosons in optical lattices are one of the few systems where bosonic matter is known to exhibit strong correlations. Here, to push the frontier of our understanding of interacting bosons in optical lattices, we add synthetic spin-orbit coupling

Superconducting micro-resonator arrays with ideal frequency spacing

December 20, 2017
Author(s)
Xiangliang Liu, Weijie Guo, Y Wang, M Dai, L F. Wei , Bradley J. Dober, Christopher M. McKenney, Gene C. Hilton, Johannes Hubmayr, Jason E. Austermann, Joel Ullom, Jiansong Gao, Michael Vissers
We present a wafer trimming technique for producing superconducting micro-resonator arrays with highly uniform frequency spacing. With the light-emitting diode mapper technique demonstrated previously, we first map the measured resonance frequencies to the

Ion-Gel-Gating-Induced Oxygen Vacancy Formation in Epitaxial La 0.5Sr d0.5^CoO^d3-d Films from in operando X-ray and Neutron Scattering

December 19, 2017
Author(s)
Jeff Walter, Guichuan Yu, Biqiong Yu, Alexander Grutter, Brian Kirby, Julie Borchers, Zhan Zhang, Hua Zhou, Turan Birol, Martin Greven, Chris Leighton
Ionic-liquid/gel-based transistors have emerged as an ideal means to accumulate high charge carrier densities at the surfaces of materials such as oxides, enabling control over electronic phase transitions. Substantial gaps remain in the understanding of

Light-induced fractional quantum hall phases in graphene

December 15, 2017
Author(s)
Michael Gullans, Areg Ghazaryan, Pouyan Ghaemi, Mohammad Hafezi
We show how to realize two-component fractional quantum Hall phases in monolayer graphene by optically driving the system. A laser is tuned into resonance between two Landau levels of graphene and acts as a e ective tunneling term between these states. We

Dependence of transition width on current and critical current in transition-edge sensors

December 7, 2017
Author(s)
Kelsey M. Morgan, Christine G. Pappas, Douglas A. Bennett, Johnathon D. Gard, James P. Hays-Wehle, Gene C. Hilton, Carl D. Reintsema, Daniel R. Schmidt, Joel N. Ullom, Daniel S. Swetz
If transition-edge sensor (TES) X-ray detectors are to be useful in photon-rich environments,they must maintain high resolving power when pulse durations are engineered to be short, which is usually accomplished by increasing the thermal conductance (G)to

Correspondence: Phantom Phonon Localization in Relaxors

December 5, 2017
Author(s)
Peter M. Gehring, Daniel E Parshall, Leland Weldon Harriger, Christopher Stock, Guangyong Xu, Xiaobing Li, Haosu Luo
Manley et al. (Ref. [1]) report the observation of an unexpected, weak, phonon mode located in energy between that of the transverse acoustic (TA) and soft transverse optic (TO) modes in the relaxor ferroelectric Pb[(Mg0.33Nb0.67)1-xTix]O3 (PMN-xPT) with

Measuring the dielectric and optical response of millimeter-scale amorphous and hexagonal boron nitride films grown on epitaxial graphene

December 1, 2017
Author(s)
Albert F. Rigosi, Heather M. Hill, Nicholas R. Glavin, Sujitra J. Pookpanratana, Yanfei Yang, Alexander G. Boosalis, Jiuning Hu, Anthony Rice, Andrew A. Allerman, Nhan V. Nguyen, Christina A. Hacker, Randolph E. Elmquist, Angela R. Hight Walker, David B. Newell
Monolayer epitaxial graphene (EG), grown on the Si face of SiC, is an advantageous material for a variety of electronic and optical applications. EG forms as a single crystal over millimeter- scale areas and consequently, the large scale single crystal can

Quasi-Two-dimensional Phase Transition of Methane Adsorbed in Cylindrical Silica Mesopores

November 29, 2017
Author(s)
Daniel W. Siderius, William P. Krekelberg, Wei-Shan NMN Chiang, Vincent K. Shen, Yun Liu
Using Monte Carlo and molecular dynamics simulations, we examine the adsorption of methane in cylindrical silica mesopores in an effort to understand a possible phase transition of adsorbed methane in MCM-41 and SBA-15 silica that was previously identified
Was this page helpful?