Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Search Publications

Search Title, Abstract, Conference, Citation, Keyword or Author
  • Published Date
Displaying 1 - 25 of 2283

Anomalous Hall Effect Emerging from Field-Induced Weyl Nodes in SmAlSi

June 4, 2025
Author(s)
Yuxiang Gao, Shiming Lei, Eleanor Clememts, Yichen Zhang, Xue-Jian Gao, Songxue Chi, Kam Law, Ming Yi, Jeffrey Lynn, Emilia Morosan
The intrinsic anomalous Hall effect (AHE) has been reported in numerous ferromagnetic Weyl semimetals. However, the AHE in the antiferromagnetic (AFM) or paramagnetic (PM) state of Weyl semimetals has rarely been observed experimentally. Different

280-GHz aluminum MKID arrays for the Fred Young Submillimeter Telescope

May 29, 2025
Author(s)
Anna Vaskuri, Jordan Wheeler, Jason Austermann, Michael Vissers, James Beall, James R. Burgoyne, Victoria Butler, Scott Chapman, Steve K. Choi, Abigail Crites, Cody J. Duell, Rodrigo Freundt, Anthony Huber, Zachary Huber, Johannes Hubmayr, Jozsef Imrek, Ben Keller, Lawrence Lin, Alicia Middleton, Michael D. Niemack, Thomas Nikola, Douglas Scott, Adrian Sinclair, Ema Smith, Gordon Stacey, Joel Ullom, Jeffrey Van Lanen, Eve Vavagiakis, Samantha Walker, Bugao Zou
First light observations of the 280 GHz instrument module of the Fred Young Submillimeter Telescope (FYST) in the CCAT Collaboration are expected in 2026. The focal plane of this module will consist of three superconducting microwave kinetic inductance

Pair Wavefunction Symmetry in UTe2 from Zero-Energy Surface State Visualization

May 29, 2025
Author(s)
Qiangqiang Gu, Shuqiu Wang, Joseph Carroll, Kuanysh Zhussupbekov, Christopher Broyles, Sheng Ran, Nicholas Butch, Jarryd Horn, Shanta Saha, Johnpierre Paglione, Xiaolong Liu, J. Davis, Dung-Hai Lee
Although nodal spin-triplet topological superconductivity appears probable in uranium ditelluride (UTe2), its superconductive order parameter Δk remains unestablished. In theory, a distinctive identifier would be the existence of a superconductive

Altermagnetic band splitting in 10 nm epitaxial CrSb thin films

May 1, 2025
Author(s)
Sandra Santhosh, Yongxi Ou, Paul Corbae, Wilson Yanez-Parreno, Supriya Ghosh, Alexei Fedorov, Makoto Hashimoto, Donghui Lu, Christopher Jensen, Julie Borchers, Alexander Grutter, Timothy Charlton, Anthony Richardella, K. A. Mkhoyan, Christopher Palmstrom, Nitin Samarth
Altermagnets are a newly identified family of collinear antiferromagnets with a momentum-dependent spin-split band structure of non-relativistic origin, derived from spin-group symmetry-protected crystal structures. Among candidate altermagnets, CrSb is

Zeeman split Kramers doublets in spin-supersolid candidate Na2BaCo(PO4)2

April 3, 2025
Author(s)
T. Popescu, N. Gora, F. Demmel, Z. Xu, R. Zhong, T. Williams, R. Cava, Guangyong Xu, C. Stock
Na2BaCo(PO4)2 is a triangular antiferromagnet that displays highly efficient adiabatic demagnetization cooling (Ref. 1) near a quantum critical point at μ0Hc ∼ 1.6 T, separating a low-field magnetically disordered from a high-field fully polarized

Odd-Parity Quasiparticle Interference in the Superconductive Surface State of UTe2

March 22, 2025
Author(s)
Shuqiu Wang, Kuanysh Zhussupbekov, Joseph Carroll, Bin Hu, Xiaolong Liu, Emile Pangburn, Adeline Crepieux, Cathrine Pepin, Christopher Broyles, Sheng Ran, Nicholas Butch, Shanta Saha, Johnpierre Paglione, Cristina Bena, J. Davis, Qiangqiang Gu
Although no known material exhibits intrinsic topological superconductivity, wherein spin-triplet odd-parity electron pairing occurs, UTe2 is now the leading representative of this class. Conventionally, the parity of the superconducting order parameter

Electron transport in bilayer graphene nanoconstrictions patterned using atomic force microscope nanolithography

March 20, 2025
Author(s)
Robert Rienstra, Nishat Sultana, En-Min Shih, Evan Stocker, Kenji Watanabe, Takashi Taniguchi, Curt Richter, Joseph Stroscio, Nikolai Zhitenev, Fereshte Ghahari Kermani
Here we report on low temperature transport measurements of encapsulated bilayer graphene nano constrictions fabricated employing electrode-free AFM-based local anodic oxidation (LAO) nanolithography. This technique allows for the creation of constrictions

Detection of fractional quantum Hall states by entropy-sensitive measurements

March 17, 2025
Author(s)
Nishat Sultana, Robert Rienstra, K Watanabe, T Taniguchi, Joseph Stroscio, Nikolai Zhitenev, D Feldman, Fereshte Ghahari Kermani
Measurements of the thermopower of a clean two-dimensional electron system is directly proportional to the entropy per charge carrier1 which can probe strongly interacting quantum systems ranging from black holes2 to the fractional quantum Hall effect

Thermal properties and ultra-low thermal conductivity of Zn2GeSe4

March 11, 2025
Author(s)
Oluwagbemiga Ojo, Wilarachchige Gunatilleke, Adam Biacchi, Hsin Wang, George Nolas
Materials-related discovery continues to drive advancements in technologically significant fields of interest. Moreover, an understanding of the thermal properties of materials is essential for any application of interest. Here, we report on the structural

High-endurance bulk CMOS one-transistor cryo-memory

February 28, 2025
Author(s)
Alexander Zaslavsky, Pragya Shrestha, Valery Ortiz Jimenez, Jason Campbell, Curt Richter
Previously we reported a compact one-transistor (1T) 180 nm bulk CMOS cryo-memory with a high 10^7 I_1/I_0 memory window and long 800 s retention time based on impact-ionization-induced charging of the transistor body. Here, we present the endurance and

Quantum Emitters Induced by High Pressure and UV Laser Irradiation in Multilayer GaSe

February 14, 2025
Author(s)
Sinto Varghese, Sichenge Wang, Bimal Neupane, Bhojraj Bhandari, Yan Jiang, Roberto Gonzalez Rodriguez, Sergiy Krylyuk, Albert Davydov, Hao Yan, Yuanxi Wang, Anupama Kaul, Jingbiao Cui, Yuankun Lin
In this work, we report on defect generation in multilayer GaSe through hydrostatic pressure quenching and UV laser irradiation. The Raman line width from the UV 266 nm irradiated sample is much wider than that in pressure-quenched GaSe, corresponding to a

Electronic Commensuration of a Spin Moire Superlattice in a Layered Magnetic Semimetal

February 4, 2025
Author(s)
Takashi Kurumaji, Nisarga Paul, Shiang Fang, Paul Neves, Mingu Kang, Jonathan White, Taro Nakajima, David Graf, Linda Ye, Mun Chan, Takehito Suzuki, Jonathan Denlinger, Chris Jozwiak, Aaron Bostwick, Eli Rotenberg, Jeffrey Lynn, Efthimios Kaxiras, Riccardo Comin, Liang Fu, Joseph Checkelsky, Yang Zhao
Spin moiré superlattices (SMSs) have been proposed as a magnetic analog of crystallographic moiré systems and a source of electron minibands offering vector-field moiré tunability and Berry curvature effects. However, it has proven challenging to realize

Platinum Hydride Formation during Cathodic Corrosion in Aqueous Solutions

January 22, 2025
Author(s)
Thomas Hersbach, Angel T. Garcia-Esparza, Selwyn Hanselman, Thijs Hoogenboom, Ian McCrum, Dimitra Anastasiadou, Jeremey Feaster, Thomas Jaramillo, John Vinson, Thomas Kroll, Amanda Garcia, Petr Krtil, Dimosthenis Sokaras, Marc Koper
Cathodic corrosion is an electrochemical phenomenon that dramatically etches metals under commonly used electrocatalytic conditions. Though cathodic corrosion is thought to occur by forming a metal-containing anion, such an ion has not yet been observed

Materials Discovery in Combinatorial and High-throughput Synthesis and Processing: A New Frontier for SPM

January 5, 2025
Author(s)
Boris Slautin, Yungtao Liu, Yu Liu, Reece Emery, Seungbum Hong, Astita Dubey, Vladimir Shvartsman, Doru Lupascu, Sheryl Sanchez, Mahshid Ahmadi, Yunseok Kim, Evgheni Strelcov, Keith Brown, Philip Rack, Sergei Kalinin
For over three decades, scanning probe microscopy (SPM) has been a key method for exploring material structures and functionalities at nanometer and often atomic scales in ambient, liquid, and vacuum environments. Historically, SPM applications have

Connection between f-electron correlations and magnetic excitations in UTe2

January 4, 2025
Author(s)
Thomas Halloran, Peter Czajka, Gicela Saucedo Salas, Corey Frank, Jose Rodriguez Rivera, Daniel Mazzonne, Jakob Lass, Nicholas Butch
Abstract The detailed anisotropic dispersion of the low-temperature, low-energy magnetic excitations of the candidate spin-triplet superconductor UTe 2 is revealed using inelastic neutron scattering. The magnetic excitations emerge from the Brillouin zone

Time evolution of a pumped molecular magnet - a time resolved inelastic neutron scattering study

January 1, 2025
Author(s)
T. Reeder, Paraj Titum, J. Kindervater, Qiang Ye, Jose Rodriguez Rivera, Yiming Qiu, Nicholas C. Maliszewskyj, T. McQueen, Collin L. Broholm
ntroducing an experimental technique of time-resolved inelastic neutron scattering (TRINS), we explore the time-dependent effects of resonant pulsed microwaves on the molecular magnet Cr8F8Piv16. The octagonal rings of magnetic Cr3+ atoms with

Magneto-Ionic Physical Reservoir Computing

December 9, 2024
Author(s)
Md Mahadi Rajib, Dhritiman Bhattacharya, Christopher Jensen, Gong Chen, Fahim F. Chowdhury, Shouvik Sarkar, Kai Liu, Jayasimha Atulashimha
Recent progresses in magneto-ionics offer exciting potentials to leverage its non-linearity, short-term memory, and energy-efficiency to uniquely advance the field of physical reservoir computing. In this work, we experimentally demonstrate the

Spectroscopy of photoionization from the 1E singlet state in nitrogen-vacancy centers in diamond

October 17, 2024
Author(s)
Sean Blakley, Thuc Mai, Stephen Moxim, Jason Ryan, Adam Biacchi, Angela Hight Walker, Robert McMichael
The 1E—1A1 singlet manifold of the negatively charged nitrogen vacancy (NV −) center in diamond plays a central role in the quantum information and quantum sensing applications of the NV − center. However, the energy of this manifold within the diamond

Absence of a Bulk Signature of a Charge Density Wave in Hard X-ray Measurements of UTe2

October 9, 2024
Author(s)
Caitlin Kengle, Dipanjan Chaudhuri, Xuefei Guo, Thomas Johnson, Simon Bettler, Wolfgang Simeth, Matthew Krogstad, Zahir Islam, Sheng Ran, Shanta Saha, Johnpierre Paglione, Nicholas Butch, Eduardo Fradkin, Vidya Madhavan, Peter Abbamonte
The long-sought pair density wave (PDW) is an exotic phase of matter in which charge density wave (CDW) order is intertwined with the amplitude or phase of coexisting, superconducting order. Originally predicted to exist in copper-oxides, circumstantial

Unusually strong near-infrared photoluminescence of highly transparent bulk InSe flakes

September 23, 2024
Author(s)
Jamie Geng, Dehui Zhang, Inha Kim, Hyong Min Kim, Naoiki Higashitarumizu, I K M Reaz Rahman, Lam Lam, Joel W. Ager III, Albert Davydov, Sergiy Krylyuk, Ali Javey
Bulk γ-InSe has a direct bandgap of 1.24 eV, which corresponds to near infrared wavelengths (λ = 1.0 µm) useful in optoelectronic applications from biometric detectors to silicon photonics. However, its potential for optoelectronic applications is largely
Was this page helpful?