NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Constantinos Makrides, Daniel Barker, James A. Fedchak, Julia Scherschligt, Stephen Eckel, Eite Tiesinga
We have found an error in the computation of the thermally-averaged total elastic rate coefficient for the collision of a room-temperature helium atom with an ultra-cold lithium atom presented. We omitted the factor $2/\sqrt\pi}$ in the normalization over
We report new experimental hyperfine structure constants of levels in neutral and singly ionized Scandium (Sc I & Sc II). We observed spectra of Sc-Ar and Sc-Ne hollow cathode discharges in the region 185 nm - 3500 nm (54,055 cm-1 - 2857 cm-1) using
Demian Riccardi, Zachary Trautt, Ala Bazyleva, Eugene Paulechka, Vladimir Diky, Joe W. Magee, Andrei F. Kazakov, Scott Townsend, Chris Muzny
The ThermoML archive is a subset of Thermodynamics Research Center (TRC) data holdings corresponding to cooperation between NIST TRC and five journals: Journal of Chemical Engineering and Data (ISSN: 0021-9568), The Journal of Chemical Thermodynamics (ISSN
A wide variability in accuracy exists among commercial radiation detection instruments used to measure exposure rate or ambient dose equivalent rate. These instruments are used to measure both the radiation background and the radiation field produced by
Ryan P. Fitzgerald, Bradley Alpert, Dan Becker, Denis E. Bergeron, Richard Essex, Kelsey Morgan, Svetlana Nour, Galen O'Neil, Dan Schmidt, Gordon A. Shaw, Daniel Swetz, R. Michael Verkouteren, Daikang Yan
We present a new paradigm for the primary standardization of radionuclide activity per mass of solution (Bq/g). Two key enabling capabilities are 4π decay-energy spectrometry using chip-scale sub-Kelvin microcalorimeters and direct realization of mass by
Barry I. Schneider, klaus bartschat, Kathryn Hamilton
Since its initial development in the 1970s by Phil Burke and his collaborators, the R-matrix theory and associated computer codes have become the method of choice for the calculation of accurate data for general electron–atom/ion/molecule collision and
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Svetlana Nour, Jerome LaRosa, The PROSPECT Collaboration
A joint determination of the reactor antineutrino spectra resulting from the fission of 235U and 239Pu has been carried out by the Daya Bay and PROSPECT collaborations. This letter defines the level of compatibility of 235U spectrum measurements from the
Hans Pieter Mumm, Denis E. Bergeron, Mark Tyra, Jerome LaRosa, Svetlana Nour, PROSPECT collaboration, STEREO collaboration
The PROSPECT and STEREO collaborations present a combined measurement of the pure 235U antineutrino spectrum, with site specific corrections and effects dependent on the separate detectors removed. The spectral measurements of the two highest-precision
Jacek Klos, Hui Li, Eite Tiesinga, Svetlana Kotochigova
Molecules with unstable isotopes often contain heavy and deformed nuclei and thus possess a high sensitivity to parity-violating effects, such as Schiff moments. Currently the best limits on Schiff moments are set with diamagnetic atoms. Polar molecules
Stephan Schlamminger, Leon Chao, David B. Newell, Vincent Lee
The dynamics of a swinging payload suspended from a stationary crane can be described as a simple pendulum, typically an unwelcome phenomenon on a construction site. An experienced crane operator can deliver a swinging payload and stop dead on target in a
Reference cell-based current versus voltage ( I–V ) measurements assume that the effect of an illumination spectrum on a solar cell's performance can be fully captured by the multiplication of the spectrum with the device's spectral response and subsequent
Hans Pieter Mumm, Catherine Romano, Nathaniel Bowden, Andrew Conant, Bethany Goldblum, Patrick Huber, Jonathan Link, Bryce Littlejohn, Juan Pedro Ochoa-Ricoux, Shikha Prasad, Catherine Riddle, Alejandro Sonzogni, William Wieselquist
The large quantities of antineutrinos produced through the decay of fission fragments in nuclear reactors provide an opportunity to study the properties of these particles and to investigate their use in reactor monitoring. The reactor antineutrino spectra
We describe the model and construction of a two-flow (or divided-flow) humidity generator, developed at LNE-CNAM, that uses mass flow controllers to mix a stream of dry gas with a stream of humid gas saturated at 28 °C. It can generate a wide range of
Qian Yu, Alberto Alonso, Jackie Caminiti, Robert Sutherland, Dietrich Leibfried, Kayla Rodriguez, Madhav Dhital, Boerge Hemmerling, Hartmut Haeffner, Kristin Beck
We investigate the feasibility of using electrons in a linear Paul trap as qubits in a future quantum computer. We discuss the necessary experimental steps to realize such a device through a concrete design proposal, including trapping, cooling, electronic
Jordan Stone, Gregory Moille, Xiyuan Lu, Kartik Srinivasan
We study optical parametric oscillations in Kerr-nonlinear microresonators, revealing an intricate solution space -- parameterized by the pump-to-sideband conversion efficiency -- that arises from an interplay of nonlinear processes. Using a three-wave
The convergent close-coupling (CCC) method was initially developed to describe electron scattering on atomic hydrogen and the hydrogenic ions such as He+. The latter allows implementation of double photoionization (DPI) of the helium atom. For more complex
Florian Kranzl, Aleksander Lasek, Manoj Joshi, Amir Kalev, Rainer Blatt, Christian Roos, Nicole Halpern
Quantum simulators have recently enabled experimental observations of quantum many-body systems' internal thermalisation. Often, the global energy and particle number are conserved, and the system is prepared with a well-defined particle number—in a
Nicholas Nardelli, Tara Fortier, Marco Pomponio, Esther Baumann, Craig Nelson, Thomas Schibli, Archita Hati
We generate 10 GHz microwave signals using the transfer oscillator technique, which employs digital and RF analog techniques to coherently remove the additive noise from an optical frequency comb. This method permits transfer of the frequency stability and
James Ashton, Brian Manning, Stephen Moxim, Fedor Sharov, Patrick Lenahan, Jason Ryan
Electrically detected magnetic resonance (EDMR) measurements have been extended to sub-mT measurements through utilization of frequency sweeping of the oscillating magnetic field, where conventional electron paramagnetic resonance-based measurements