NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Aqueous two-phase extraction (ATPE) is an effective and scalable liquid-phase processing method for purifying single species of single-wall carbon nanotubes (SWCNTs) from multiple species mixtures. Recent metrological developments have led to advances in
Frank Abel, Eduardo De Lima Correa, Thinh Bui, Adam Biacchi, Michael J. Donahue, Mia Merritt, Jonathan Seppala, Solomon I. Woods, Angela Hight Walker, Cindi Dennis
High crystal quality nano-ferrites with short surface ligands (oleic acid) were recently shown to exhibit enhanced spatial resolution in magnetic particle imaging (MPI). Here, we develop a simple one-pot thermal decomposition approach to produce ferrite
Joel Swanson, Salah El Jamal, Tyler Hartman, Orlando Stewart, Priscilla Glaser, Adam Biacchi, DaVonne Henry, Amy Liu, Sarah Stoll
Neodymium tritelluride is a layered van der Waals material, with correlated electronic properties including high electronic mobility, charge density waves, and antiferromagnetism. We developed a solution synthesis method to form free standing nanosheets of
Tae Joon Cho, Vytas Reipa, John Pettibone, Justin Gorham, Allesandro Tona, Aaron Johnston-Peck, Bryant C. Nelson, Vincent Hackley
Using dendron chemistry, we developed stability-enhanced carboxylate surfacemodified (negatively charged dendron) AuNPs (Au-NCD). Since the carboxylate surface of Au- NCD is optimal for complexation with cisplatin (Pt) moieties, we further synthesized Pt
Jeffrey Schwartz, Sergiy Krylyuk, Devon Jakob, Albert Davydov, Andrea Centrone
Control over the local chemical composition and spatial heterogeneities in nanomaterials provides a means to impart new functions and to tailor their properties in many applications. For two-dimensional (2D) van der Waals materials, intercalation is one
Andrea Centrone, Belen Lerma-Berlanga, Adam Biacchi, Carmen Fernandez Conde, Georges Pavlidis, Carlos Marti-Gastaldo
The modular synthesis approach for assembling inorganic nodes and organic multidentate linkers into reticular solids enables rational engineering in porous materials known as metal-organic frameworks (MOFs). Incorporation of two or more linker types in MOF
Kamal Choudhary, Kevin Garrity, Francesca Tavazza, Ghanshyam Pilania
We develop a computational database, web-apps and machine-learning (ML) models to accelerate the design and discovery of two-dimensional (2D)-heterostructures. Using density functional theory (DFT) based lattice-parameters and electronic band-energies for
Jonathan Wyrick, Xiqiao Wang, Pradeep Namboodiri, Ranjit Kashid, Fan Fei, Joseph Fox, Richard M. Silver
Doping of Si using the scanning probe technique of hydrogen depassivation lithography has been shown to enable placing and positioning small numbers of P atoms with nanometer accuracy. Several groups have now used this capability to build devices that
Atomic scale spectroscopy provides an exceptional ability to define electronic, optical, thermal, mechanical, and chemical properties of materials at the nanoscale. At these scales, dimensional confinement can lead to new and unusual properties, where the
The development of new characterization methods has resulted in innovative studies of the properties of two-dimensional (2D) materials. Observations of nanoscale heterogeneity with scanning probe microscopy methods have led to efforts to further understand
Adam Biacchi, Lucas Johnson, Ashley Sweet, Eric Cal, Angela R. Hight Walker, Matthew Buck, Luke Barrante
Colloidal multi-metal oxide nanocrystals that contain the element vanadium are attractive materials for enabling diverse technologies. Few nanocrystal systems are synthetically well-developed, however, which is attributable to a scarcity of molecular
True thermodynamic stability of a solid colloidal dispersion is generally unexpected, so much so that a thorough experimental validation of proposed stable systems remains incomplete. Such dispersions are underinvestigated and would be of interest because
Pricilla Glaser, Orlando Stewart, Rida Atif, Dane Asuigui, Joel Swanson, Adam Biacchi, Angela R. Hight Walker, Gregory Morrison, Hans-Conrad zur Loye, Sarah Stoll
In targeting reduced valence lanthanides, we report the first nanoparticle synthesis of the mixed-valent ferromagnets Eu3S4 and EuSm2S4. Using divalent lanthanide halides with bis(trimethylsilyl)sulfide and oleylamine, we prepared nanoparticles of EuS
We present a novel approach for growth of surface-directed spinel Ga2O3 nanofins coated with non-polar GaN shell. Our results show that use of a binary compound such as core-shell nanostructures as a starting material is not necessary to promote the
Yuanyuan Li, Matthew Kottwitz, Joshua L. Vincent, Zongyuan Liu, Michael J. Enright, Lihua Zhang, Jiahao Huang, Sanjaya D. Senanayake, Wei-Chang Yang, Peter A. Crozier, Ralph G. Nuzzo, Anatoly I. Frenkel
Oxide-supported noble metal catalysts have been extensively studied for decades for the water gas shift (WGS) reaction, a catalytic transformation central to a host of large volume processes that variously utilize or produce hydrogen. There remains
Hongxuan Guo, Alexander Yulaev, Evgheni Strelcov, Alexander Tselev, Christopher M. Arble, Andras Vladar, John S. Villarrubia, Andrei Kolmakov
The mean free path of secondary electrons in aqueous solutions is on the order of a nanometer, making them a suitable probe of ultrathin electrical double layers at solid-liquid electrolyte interfaces. Employing graphene as an electron-transparent
Tae Joon Cho, Justin M. Gorham, John M. Pettibone, Jingyu Liu, Jiaojie Tan, Vincent A. Hackley
Despite the breadth and quality of published work in this area, it remains unclear how the specific properties of polyethyleneimine (PEI) and the methods utilized to conjugate it to gold nanoparticles (AuNPs) impact the final product morphology and
Adam J. Biacchi, Thinh Q. Bui, Cindi L. Dennis, Solomon I. Woods, Angela R. Hight Walker
Thermometry based on magnetic nanoparticles (MNPs) is an emerging technology that allows for remote temperature measurements throughout a volume that are impossible to achieve using conventional probe-based or optical methods. This metrology is based on
Andrei A. Kolmakov, Radislav A. Potyrailo, Steven Go, Daniel Sexton, Xiaxi Li, Nasr Alkadi, Bruce Amm, Richard St-Pierre, Brian Scherer, Majid Nayeri, Guang Wu, Christopher Collazo-Davila, Doug Forman, Chris Calvert, Craig Mack, Philip Mcconnell
Electrical response of metal oxide semiconducting (MOS) materials to gases was discovered 70 years ago [1] and miniature low-cost MOS chemiresistors became the most popular gas sensors when chemical selectivity is not required [2, 3]. When discrimination
Evgheni Strelcov, Christopher M. Arble, Hongxuan Guo, Brian D. Hoskins, Alexander Yulaev, Ivan Vlassiouk, Nikolai B. Zhitenev, Alexander Tselev, Andrei A. Kolmakov
The structure and potential drop across the electrical double layer (EDL) govern the operation of multiple electrochemical devices, determine reaction potentials and condition ion transport through the cellular membranes in living organisms. Despite more
Jeffrey A. Fagan, Ming Zheng, Sofie Cambre, Wim Wenseleers, Benjamin Flavel, Han Li, Stephanie Reich, Georgy Gordeev, Oisin Garrity, Naga Peyyety, Ralph Krupke, Pranauv Selvasundaram
Enantiomer level isolation of single-wall carbon nanotubes (SWCNTs) in high concentration and purity for nanotubes greater than 1.1 nm in diameter is demonstrated for the first time using a twostage aqueous two-phase extraction (ATPE) technique. In total 5
Justin E. Elenewski, Kirill Velizhanin, Michael P. Zwolak
While ubiquitous, energy redistribution remains a poorly understood facet of the nonequilibrium thermodynamics of biomolecules. At the molecular level, finite-size effects, pronounced nonlinearities, and ballistic processes conspire to produce behavior