An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Hayden Evans, Taner N. Yildirim, Peng Peng, Yongqiang Cheng, Zeyu Deng, Qiang Zhang, Dinesh Mullangi, Dan Zhao, Pieremanuele Canepa, Hanna M. Breunig, Anthony K. Cheetham, Craig Brown
Long-duration storage of hydrogen is necessary for coupling renewable H2 with stationary fuel cell power applications. In this work, aluminum formate (ALF), which adopts the ReO3-type structure, is shown to have remarkable H2 storage performance at non
The reduction of carbon dioxide (CO2) into value-added feedstock materials, fine chemicals, and fuels represents a crucial approach for meeting contemporary chemical demands while reducing dependence on petrochemical sources. Optimizing catalysts for the
Changmin Shi, Saya Takeuchi, George Alexander, Tanner Hamann, Jonathan O'Neill, Joseph A. Dura, Eric Wachsman
Abstract The cubic‐garnet (Li 7La 3Zr 2O 12, LLZO) lithium–sulfur battery shows great promise in the pursuit of achieving high energy densities. The sulfur used in the cathodes is abundant, inexpensive, and possesses high specific capacity. In addition
Mehdi Hashemi-Tilehnoee, Nikolay Tsirin, Victor Stoudenets, Yuriy Bushuev, Miroslaw Chorazewski, Mian Li, Dan Li, Juscelino Leao, Markus Bleuel, Pawel Zajdel, Elena Palomo Del Barrio, Yaroslav Grosu
Liquid piston is a method for pressure transmission used in a wide range of technologies. Currently, liquid piston is a passive element solely used to apply pressure to a working body. In this work, the concept of liquid piston based on molecular springs –
Daniel Sunday, Adam Burns, Tyler Martin, Alice Chang, Robert Grubbs
Developing an understanding of the relationships between structure and conformation in complex macromolecular architectures is key for designing materials with targeted properties in applications ranging from sensors to tissue replacement. Bottlebrush
Arpita Mitra, Run Xiao, Wilson Yanez, Yongxi Ou, Juan Chamorro, Tyrel M. McQueen, Alexander Grutter, Julie A. Borchers, Michael R. Fitzsimmons, Timothy Charlton, Nitin Samarth
Breaking time-reversal symmetry in a Dirac semimetal Cd3As2 through doping with magnetic ions or by the magnetic proximity effect is expected to cause a transition to other topological phases (such as a Weyl semimetal). To this end, we investigate the
Jonathan Piccini, Tim Quinn, Lucas Koepke, James Dawson, Nicki Mara, Jason Santelli, Diane Muff, Jordan Savela, Alex Felber, Michael Friedrich, Jens Rump, Felix Tschentscher, Jake Benzing, Charles Swerdlow
Transvenous leads of cardiac implanted electronic device (CIED) systems are meant to last the life of the patient, but they are at risk for conductor fatigue fracture from applied alternating stress. This stress depends on lead design and use conditions
Taotao Meng, Yu Ding, Yu Liu, Lin Xu, Yimin Mao, Julia Gelfond, Shuke Li, Zhihan Li, Paul Salipante, Hoon Kim, J. Zhu, Xuejun Pan, Liangbing Hu
Bamboo composite is an attractive candidate for structural materials in applications such as construction, the automotive industry, and logistics. However, its development has been hindered due to the use of harmful petroleum-derived synthetic adhesives or
Jiale Shi, Nathan Rebello, Dylan Walsh, Michael Deagen, Bruno Salomao Leao, Debra Audus, Bradley Olsen
Defining the similarity between chemical entities is an essential task in polymer informatics, enabling ranking, clustering, and classification. Despite its importance, pairwise chemical similarity for polymers remains an open problem. Here, a similarity
Peter Bradley, May Ling Martin, Matthew Connolly, Robert Amaro, Damian Lauria, Andrew Slifka
Strain-controlled fully-reversed fatigue testing, or strain-life testing, provides critical information on material lifetime and damage response. Strain-life data in hydrogen gas environments is missing in the literature and could provide valuable insights
Luckshitha Suriyasena Liyanage, Connor Smith, Jacob Pawlik, Sarah Evans, Angela Stelson, Chris Long, Nate Orloff, David Arnold, Jim Booth
Flexible and stretchable materials have attracted significant interest for applications in wearable electronics and bioengineering fields. Recent developments also incorporate embedded microwave circuits, components, and systems with engineered flexible
Ashley Russell, Kerrianne Buchanan, David Griffith, Heather Evans, Dimitrios Meritis, Lisa Ng, Anna Sberegaeva, Michelle Stephens
The 2023 National Institute of Standards and Technology Environmental Scan provides an analysis of key external factors that could impact NIST and the fulfillment of its mission in coming years. The analyses were conducted through three separate lenses
Zachary Buck, Matthew Connolly, May Martin, Damian Lauria, Jason Killgore, Peter Bradley, Yan Chen, Ke An, Andrew Slifka
Interrupted tensile tests were performed on an AISI 4130 pressure vessel steel and investigated by neutron diffraction and scanning microscopy techniques. Analysis of the neutron diffraction patterns reveal a partitioning of ferrite and martensite phases
This is the report of a hybrid working group meeting held on April 25, 2023, at the National Institute of Standards and Technology (NIST) in Boulder, CO. The working group was focused on extreme ultraviolet lithography (EUVL) research, development, and
Nan Tang, W. L. N. C. Liyanage, Sergio A. Montoya, Sheena Patel, Lizabeth J. Quigley, Alexander Grutter, Michael R. Fitzsimmons, Sunil Sinha, Julie A. Borchers, Eric E. Fullerton, Lisa Debeer-Schmitt, Dustin A. Gilbert
Magnetic skyrmions exhibit unique, technologically relevant pseudo-particle behaviors which arise from their topological protection, including well-defined, three-dimensional breathing and gyration modes which occur at microwave frequencies. During dynamic
Frances Allen, Paul Blanchard, David Pappas, Russell Lake, Deying Xia, John Notte, Ruopeng Zhang, Andrew Minor, Norman A. Sanford
We demonstrate a new focused ion beam sample preparation method for atom probe tomography. The key aspect of the new method is that we use a neon ion beam for the final tip shaping after conventional annulus milling using gallium ions. This dual-ion
Florian Bergmann, Meagan Papac, Nick Jungwirth, Bryan Bosworth, Tomasz Karpisz, Anna Osella, Lucas Enright, Eric Marksz, Angela Stelson, Chris Long, Nate Orloff
DyScO3 (DSO) is an attractive substrate on which to grow epitaxial thin films with extraordinary materials physics. However, its highly anisotropic permittivity makes some measurements exceedingly difficult: For instance, its permittivity tensor has not
Runze Zhang, Robert Black, Debashish Sur, Parisa Karimi, Kangming Li, Brian DeCost, John Scully, Jason Hattrick-Simpers
Electrochemical Impedance Spectroscopy (EIS) is a powerful tool for electrochemical analysis; however, its data can be challenging to interpret. Here, we introduce a new open-source tool named AutoEIS that assists EIS analysis by automatically proposing
Kevin Maik Jablonka, Alexander Al-Feghali, Shruti Badhwar, Joshua Bocarsly, Stefan Bringuier, Kamal Choudhary, Defne Circi, Samantha Cox, Matthew Evans, Nicolas Gastellu, Jerome Genzling, Maria Victoria Gil, Ankur Gupta, Wibe de Jong, Tao Liu, Sauradeep Majumdar, Garrett Merz, Nicolas Moitessier, Lynda Brinson, Beatriz Mourino, Brenden Pelkie, Mayk Caldas Ramos, Bojana Rankovic, Jacob Sanders, Ben Blaiszik, Andrew White, Ian Foster, Ghezal Ahmad Jan Zia
Chemistry and materials science are complex. Recently, there have been great successes in addressing this complexity using data-driven or computational techniques. Yet, the necessity of input structured in very specific forms and the fact that there is an
Ran Tao, Sukrut Prashant Phansalkar, Aaron M. Forster, Bongtae Han
Cure kinetics of epoxy molding compounds (EMCs) is a fundamental material property that affects the molding process of semiconductor chips and final package performance. However, due to measurement challenges related to the small polymer fraction, only the
Steve Novakov, Peter B. Meisenheimer, Grace A. Pan, Patrick Kezer, Nguyen M. Vu, Alexander Grutter, Ryan F. Need, Julia Mundy, John Heron
Non-collinear antiferromagnets are an exciting new platform for studying intrinsic spin Hall effects, phenomena that arise from the materials' band structure, Berry phase curvature, and linear response to an external electric field. In contrast to