An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Wai Cheong Tam, Eugene Yujun Fu, Paul A. Reneke, Richard D. Peacock, Thomas Cleary
A generic graph neural network-based model is developed to predict the potential occurrence of flashover for different building structures. The proposed model transforms multivariate temperature data into graph-structure data. Utilizing graph convolution
Jun Wang, Andy Tam, Youwei Jia, Richard Peacock, Paul A. Reneke, Eugene Yujun Fu, Thomas Cleary
Research was conducted to examine the use of Support Vector Regression (SVR) to build a model to forecast the potential occurrence of flashover in a single-floor, multi-room compartment fire. Synthetic temperature data for heat detectors in different rooms
Andy Tam, Eugene Yujun Fu, Richard Peacock, Paul A. Reneke, Jun Wang, Grace Ngai, Hong Va Leong, Thomas Cleary
Fire fighter fatalities and injuries in the U.S. remain too high and fire fighting too hazardous. Until now, fire fighters rely only on their experience to avoid life-threatening fire events, such as flashover. In this paper, we describe the development of
A wireless sensor network was created to measure water-flow rate in a fire hose. An integrated electronic piezoelectric accelerometer was chosen as the sensor to measure the flow rate based on the vibrations generated by water flowing through a fire hose
Jun Wang, Andy Tam, Paul A. Reneke, Richard Peacock, Thomas Cleary, Eugene Yujun Fu, Grace Ngai, Hong Va Leong
This paper presents a study to examine the potential use of machine learning algorithms to build a model to forecast the likelihood of flashover occurrence for a single-floor multi-room compartment. Synthetic temperature data for heat detectors from
Jun Wang, Youwei Jia, Eugene Yujun Fu, Jiajia Li, Andy Tam
This paper aims to facilitate the use of machine learning to carry out supervised classification/regression tasks for time series data in fire research. Specifically, a feature engineering tool, FAST (Feature extrAction and Selection for Time-series), is
Wai Cheong Tam, Eugene Yujun Fu, Richard D. Peacock, Paul A. Reneke, Jun Wang, Jiajia Li, Thomas G. Cleary
This paper presents a learning-by-synthesis approach to facilitate the utilization of a machine learning paradigm to enhance situational awareness for fire fighting in buildings. An automated Fire Data Generator (FD-Gen) is developed. The overview of FD
Wai Cheong Tam, Eugene Yujun Fu, Amy E. Mensch, Anthony P. Hamins, Christina Yu, Grace Ngai, Hong va Leong
This paper presents a study to examine the potential use of machine learning models to build a real-time detection algorithm for prevention of unattended cooking fires. 16 sets of time- dependent sensor signals were obtained from 60 normal/ignition cooking
Kristen Greene, Shanee T. Dawkins, Sandra S. Prettyman, Pamela J. Konkol, Mary F. Theofanos, Kevin C. Mangold, Susanne M. Furman, Michelle P. Steves
With the newly created Nationwide Public Safety Broadband Network (NPSBN), the public safety community is in the process of supplementing the use of land mobile radios (LMR) to a technology ecosystem that will include a variety of new communication tools
David T. Butry, David H. Webb, Stanley W. Gilbert, Jennifer Taylor
This report identifies, summarizes, and evaluates the available data and the literature describing the economic costs associated with non-fatal firefighter injuries, illnesses, health exposures, and occupational disease (health outcomes) resulting from