NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Exhaust flow measurements have been found to be a significant source of uncertainty for measurements of heat release rate in large-scale fire experiments. Asymmetric or skewed velocity distributions are often present in the exhaust ducts for open
Wai Cheong Tam, Jun Wang, Richard D. Peacock, Paul A. Reneke, Eugene Yujun Fu, Thomas Cleary
This report provides additional technical details to an article entitled P-Flash – A Machine Learning-based Model for Flashover Prediction using Recovered Temperature Data. Research was conducted to examine the use of Support Vector Regression (SVR) to
Ryan Falkenstein-Smith, Christopher U. Brown, Thomas Cleary
An analysis of oxygen concentration measurements is conducted to investigate compartment ventilation before a potential backdraft phenomenon. Experiments are performed in a 2/5th scale compartment of varying configurations such as fuel flow time, spark
Alexander Maranghides, Eric Link, Shonali Nazare, Steven Hawks, Jim McDougald, Stephen Quarles, Daniel Gorham
In the last twenty years, wildland-urban interface (WUI) fires have been growing in severity and size. The structures destroyed by WUI fires have devastated entire communities and have cost billions of dollars while significantly impacting the social
Strap-braced, cold-formed steel framed walls are frequently used as the lateral force resisting system in cold-formed steel construction. While the behavior of these walls has been studied under lateral loading and (to a lesser extent) under fire
Benjamin M. Miller, Tom Latourrette, Drake Warren, David Metz
Standards provide critical benefits across a wide variety of contexts, including safety and health, environmental protection, and quality of products and services. However, while these benefits are generally acknowledged, estimating the social and economic
Alexander Maranghides, Shonali Nazare, Eric Link, Matthew Bundy, Artur A. Chernovsky, Erik L. Johnsson, Kathryn Butler, Steven Hawks, Frank Bigelow, William (Ruddy) Mell, Anthony Bova, Derek McNamara, Tom MIlac, Daniel Gorham, Faraz Hedayati, Bob Raymer, Frank Frievalt, William Walton
The Structure Separation Project is a multi-level project to assess structure-to-structure fire spread in Wildland-Urban Interface (WUI) communities. The project is divided into three phases with each phase assessing radiant and convective heat exposures
This report documents the design and performance of a second-generation phi meter used in multi-scale experimental applications. A constructed second-generation phi meter is implemented in bench and 2/5th scale experiments to demonstrate the instrument's
Ryan Falkenstein-Smith, Kunhyuk Sung, Jian Chen, Kimberly Harris, Anthony Hamins
This report documents a series of time-averaged gas species measurements made along the centerline of methanol, ethanol, acetone, methane, and propane pool fires steadily burning in a quiescent environment. All gas species measurements are obtained using a
Gabriel Taylor, Anthony D. Putorti Jr., Scott Bareham, Christopher U. Brown, Wai Cheong Tam, Edward Hnetkovsky, Andre Thompson, Michael Selepak, Philip Deardorff, Kenneth Hamburger, Nicholas Melly, Kenneth Miller
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena for low-voltage metal enclosed switchgear containing aluminum conductors. This report covers full-scale laboratory experiments using
Gabriel Taylor, Anthony D. Putorti Jr., Scott Bareham, Christopher U. Brown, Wai Cheong Tam, Edward Hnetkovsky, Andre Thompson, Michael Selepak, Philip Deardorff, Kenneth Hamburger, Nicholas Melly, Kenneth Miller, Kenneth Armijo, Paul Clem, Alvaro Cruz-Cabrera, Byron Demosthenous, Austin Glover, Chris LaFleur, Raymond Martinez, James Taylor, Rana Weaver, Caroline Winters
This report documents an experimental program to investigate High Energy Arcing Fault (HEAF) phenomena. The experiments provide data to better characterize the arc to improve the prediction of arc energy emitted during a HEAF event. An open box allows for
Cold-formed-steel construction frequently relies on strap-braced, cold-formed-steel framed walls as the lateral-force resisting system. While the behavior of these walls has been studied during fire and under lateral loading separately, the influence of
Devastating large outdoor fires have been responsible for destruction of vast amounts of infrastructure and loss of human life. At first glance, the complex ignition, fire spread processes, and degree of gaseous and particulate emissions appear daunting
Gabriel Taylor, Anthony D. Putorti Jr., Scott Bareham, Edward Hnetkovsky, Kenneth Hamburger, Nicholas Melly, Mark Henry Salley, Christopher U. Brown, Wai Cheong Tam, Eric Link, Michael Selepak, Philip Deardorff, Kenneth Miller, Paul Clem, Byron Demosthenous, Austin Glover, Chris LaFleur, Raymond Martinez, Anthony Tanbakuchi
This report documents an experimental program designed to investigate High Energy Arcing Fault (HEAF) phenomena for medium voltage electrical switchgear containing aluminum conductors. This report covers full-scale laboratory experiments using
In our previous work, the fire performance of seven upholstery materials combinations - including six barrier fabrics, one cover fabric and one flexible polyurethane foam - was assessed by (1) full-scale chair mock-up tests and (2) a newly developed bench
Wai Cheong Tam, Eugene Yujun Fu, Paul A. Reneke, Richard D. Peacock, Thomas Cleary
A generic graph neural network-based model is developed to predict the potential occurrence of flashover for different building structures. The proposed model transforms multivariate temperature data into graph-structure data. Utilizing graph convolution
We develop a hybrid atomistic-continuum scheme for simulating micro- and nano- flows with heat transfer. The approach is based on spatial ''domain decomposition'' in which molecular dynamics (MD) is used in regions where atomistic details are important
Structures subjected to wind loads experience torsional moments due to the eccentricity of the time-dependent resultant aerodynamic load with respect to the structures elastic center. We refer to such moments as aerodynamic torsional moments. In structures
Stanislav Stoliarov, Kenneth D. Smith, P R. Westmoreland, Richard E. Lyon, Marc R. Nyden
In this paper, we report progress that has been made in the development of an extension of classical force-field-based molecular dynamics (MD) to the simulation of chemical reactions. We review several studies of polymer pyrolysis that were performed using
This is the second manuscript in a series of publications continuing the development and application of a method for investigation of the thermal decomposition of polymeric materials. This method, which is called reactive molecular dynamics, belongs to a
F P. Ganneau, F -. Ulm, J Gondzio, Edward Garboczi
An algorithm based on a finite element discretization of the lower bound yield theorem is applied to digital images, which allows the determination of the compressive strength of highly heterogeneous materials following a Drucker-Prager (or Mohr-Coulomb)