NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Radiation-Induced Nitrogen Segregation During Electron Energy Loss Spectroscopy of Silicon Oxide-Nitride-Oxide Stacks
Published
Author(s)
Igor Levin, Richard D. Leapman, M Kovler, Y Roizin
Abstract
Electron energy loss spectroscopy in a transmission electron microscope (TEM) was used to measure elemental profiles of Si, 0 and N in the SiOx/SixNy/SiOx/poly-Si stacks deposited on silicon. The measurements were made using (i) energy-filtered TEM and EELS spectrum-line acquisition in a fixed-beam high-resolution TEM equipped with a thermionic electron source, and a post-column energy filter, and (ii) EELS spectrum-imaging in a dedicated scanning transmission electron microscope (STEM) equipped with a cold field-emission source and an EELS spectrometer. The results revealed radiation-induced nitrogen segregation to both the Si/SiOx and SiOx/poly-Si interfaces; the extent of nitrogen segregation increased visibly with increasing the radiation dose. The nitrogen diffusion through the oxide layers apparently was accompanied by the diffusion of oxygen into the nitride. Under the high radiation doses, the nitride layer was transformed into an oxynitride layer, containing a substantial amount of oxygen. Artifact-free nitrogen profiles across the Si/SiOx interfaces were obtained in STEM by scanning the beam parallel to the layers.
Citation
Applied Physics Letters
Volume
83
Issue
No. 8
Pub Type
Journals
Keywords
artifact, charge-storage, EELS, ONO, silicon nitride, silicon oxide, STEM TEM
Levin, I.
, Leapman, R.
, Kovler, M.
and Roizin, Y.
(2003),
Radiation-Induced Nitrogen Segregation During Electron Energy Loss Spectroscopy of Silicon Oxide-Nitride-Oxide Stacks, Applied Physics Letters
(Accessed October 12, 2025)