NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
Optics contamination studies in support of high-throughput EUV lithography tools
Published
Author(s)
Shannon B. Hill, Fardina Asikin, Lee J. Richter, Steven E. Grantham, Charles S. Tarrio, Thomas B. Lucatorto, Sergiy Yulin, Mark Schurmann, Viatcheslav Nesterenko, Torsten Feigl
Abstract
We report on optics contamination rates induced by exposure to broad-bandwidth, high-intensity EUV radiation peaked near 8 nm in a new beamline at the NIST synchrotron. The peak intensity of 50 mW/mm2 allows extension of previous investigations of contamination by in-band 13.5 nm radiation at intensities an order of magnitude lower. We report non-linear pressure and intensity scaling of the contamination rates which is consistent with the earlier lower-intensity studies. The magnitude of the contamination rate per unit EUV dose, however, was found to be significantly lower for the lower wavelength exposures. We also report an apparent dose-dependent correlation between the thicknesses as measured by spectroscopic ellipsometry and x-ray photoelectron spectroscopy for the carbon deposits created using the higher doses available on the new beamline. It is proposed that this is due to different sensitivities of the metrologies to variations in the density of the deposited C induced by prolonged EUV irradiation.
Hill, S.
, Asikin, F.
, Richter, L.
, Grantham, S.
, Tarrio, C.
, Lucatorto, T.
, Yulin, S.
, Schurmann, M.
, Nesterenko, V.
and Feigl, T.
(2011),
Optics contamination studies in support of high-throughput EUV lithography tools, EUV Lithography 2011, San Jose, CA, [online], https://doi.org/10.1117/12.879852
(Accessed October 8, 2025)