Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Evaluation of Two Methods for Determining Shell Thicknesses of Core-Shell Nanoparticles by X-ray Photoelectron Spectroscopy

Published

Author(s)

Cedric J. Powell, Wolfgang Werner, Alexander Shard, David G. Castner

Abstract

We evaluated two methods for determining shell thicknesses of core-shell nanoparticles (NPs) by X-ray photoelectron spectroscopy (XPS). One of these methods had been developed for determining thicknesses of films on a planar substrate while the other was developed specifically for NPs. Our evaluations were based on simulated Cu 2p3/2 spectra from Cu-core/Cu-shell NPs with a wide range of core diameters and shell thicknesses. Copper was chosen for our tests because elastic-scattering effects for Cu 2p3/2 photoelectrons excited by Al K X-rays are known to be strong. Elastic scattering could also be switched off in our simulations so that the two methods could be evaluated in the limit of no elastic scattering. We found that the first method, based on both core and shell photoelectron intensities, was unsatisfactory for all conditions. The second method, based on an empirical equation for NPs developed by Shard, also utilized both core and shell photoelectron intensities and was found to be satisfactory for all conditions. The average deviation between shell thicknesses derived from the Shard equation and the true values was when elastic scattering was switched on and when elastic scattering was switched off. If elastic scattering was switched on, the effective attenuation length for a Cu film on a planar substrate was the appropriate length parameter while the inelastic mean free path was the appropriate parameter when elastic scattering was switched off.
Citation
Journal of Physical Chemistry C
Volume
120
Issue
39

Keywords

nanoparticles, shell thicknesses, x-ray photoelectron spectroscopy

Citation

Powell, C. , Werner, W. , Shard, A. and Castner, D. (2016), Evaluation of Two Methods for Determining Shell Thicknesses of Core-Shell Nanoparticles by X-ray Photoelectron Spectroscopy, Journal of Physical Chemistry C, [online], https://doi.org/10.1021/acs.jpcc.6b07588 (Accessed April 25, 2024)
Created September 27, 2016, Updated June 2, 2021