Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Summary

Overview 

Capture of carbon dioxide from the air (direct air capture; DAC) combined with energy efficiency and carbon capture, utilization and storage (CCUS) efforts across many technologies have the combined potential to not only reduce, but reverse increasing atmospheric CO2 levels that are implicated in man-made climate change.  

NIST is developing a comprehensive program to address current and future industry needs via development of the critical measurement and metrologies needed for successful DAC deployment and industry innovation.  

The program is across several NIST operating units, with key contacts listed below. Please look on the internal ADLP webpages under 'Collaborative Research Projects' for information on the working group (NIST Direct Air Capture (DAC) - Carbon Capture, Utilization, and Storage (CCUS) Working Group).

Pamela Chu (MML)

Andrew Allen (MML)

Dan Neumann (NCNR)

Craig Brown (NCNR)

Capabilities

 

Description

Objectives

  • To advance US competitiveness in Direct Air Capture (DAC) and Carbon Capture, Usage, and Sequestration (CCUS)
  • Use advanced neutron scattering techniques to understand the adsorption process for the most promising materials for adsorption-based carbon capture and provide avenues to optimization for a given technology 
  • Investigate mineralization and carbonation processes and subsequently processed building materials through multi-length-scale neutron probes
  • Use state-of-the-art Artificial Intelligence (AI) techniques to identify potential material compositions to perform optimally for a given technology
  • Work across NIST OU's to characterize and develop 'research grade' materials with a known performance benchmark
  • Ultimately, contribute to cost-effectively diminishing industrial CO2 emissions and empowering industrialization of DAC and net-negative CO2 solutions.

 

Important reports: 

  • National Academies of Sciences, Engineering, and Medicine (2019). Negative Emissions Technologies and Reliable Sequestration: A Research Agenda. Washington, DC: The National Academies Press. doi:10.17226/25259 

 

Major Accomplishments

NIST Colloquium Series

  1. Klaus Lackner, (Professor, Senior Global Futures Scientist, ASU)
  2. Jennifer Wilcox, (Principal Deputy Assistant Secretary in the Office of Fossil Energy and Carbon Management, DOE) (video)

External discussions 

with: D. Hancu (NETL- DOE); T. McDonald (Mosaic Materials); P. Llewellyn (TotalEnergies);

additionally with: Alissa Park (Columbia University), Dan Zhao (U. Singapore), Christopher Jones (Georgia Tech.), Climeworks, Travis Johnson (ASU)

Take-away messages: 

  1. Lack of good techniques/procedures in the community
  2. Need at least one ‘well understood’ material (PEI loaded oxides; MOF, … ) standard recipe; attrition rates, lifetime, decomposition mechanisms, …
  3. Must include H2O and O2; consider atmospheric ‘impurities’ later
  4. Differentiate between bulk and engineered contactor
  5. Need enthalpies; kinetics for uptakes; thermodynamics for desorption
  6. Need to understand material lifetime, loss of capacity

Products

Publications

  1. High-Temperature Carbon Dioxide Capture in a Porous Material with Terminal Zinc–Hydride Sites  R.C. Rohde, K.M. Carsch, M.N. Dods, H.Z.H. Jiang, A.R. McIsaac, R.A. Klein, H. Kwon, S.L. Karstens, Y. Wang, A.J. Huang, J.W. Taylor, Y. Yabuuchi, K.E. Engler, K.R. Meihaus, K.C. Bustillo, A.M. Minor, J.A. Reimer, M. Head-Gordon, C.M. Brown, J.R. Long, Science, 2024, 386, 4723
  2. Progress in Development of Characterization Capabilities to Evaluate Candidate Materials for Direct Air Capture Applications Carter M.; Nguyen Huong G.; Allen A.; Yi F.; Yang W.-C.; Baumann A.; McGivern W.S.; Manion J.A.; Kuzmenko I.; Tsinas Z.; Wentz C.; Wenny M.; Siderius D.; van Zee R.; Stafford C.; Brown C.M.; Journal of CO2 Utilization, 89, 102975
  3. Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change, Cockayne E.J.; McDannald A.; Wong-Ng W.; Chen Y.-S.; Gándara Barragán F.; Benedict J.; Hendon C.H.; Keen D.A.; Kolb U.; Li L.; Ma S.;  Morris W.; Nandy A.; Runčevski T.; Soukri M.; Sriram A.; Steckel J.A.; Findley J.; Wilmer C.; Yildirim T.; Zhou W.; Levin I.; Brown C.M.; J. Mater. Chem. A, 2024,12, 25678-25695
  4. NIST Workshop: Integrating Crystallographic and Computational Approaches to Carbon-Capture Materials for the Mitigation of Climate Change (October 31–November 1, 2023) Wong-Ng, W.; Cockayne, E.; Mcdannald, A.; Chen, Y.-S.; Brown, C.; Runčevski, T.; Levin, I., Powder Diffraction, 2024:1-4.
  5. Controlling the CO2 Reduction Reaction through Dual-Atom Catalysts Embedded in Expanded Porphyrins: A DFT Study, G.A. McCarver, T. Yildirim, W. Zhou ChemCatChem 2024
  6. Nanotechnology Solutions for the Climate Crisis, M. Fernanda Campa, C.M. Brown, P. Byrley, J. Delborne, N. Glavin, C. Green, M. Griep, T. Kaarsberg, I. Linkov, J.B. Miller, J. Porterfield, B. Schwenzer, Q. Spadola, B. Brough, J. Warren, Nature Nano. 2024 (online)
  7. Water-Enhanced CO2 Capture with Molecular Salt Sodium Guanidinate, H.A. Evans, M. Carter, W. Zhou, T. Yildirim, C.M. Brown, H. Wu, Journal of Materials Chemistry A. 2024, 16748-16759
  8. Measuring the Influence of CO2 and Water Vapor on the Dynamics in Polyethylenimine To Understand the Direct Air Capture of CO2 from the Environment, A.E. Baumann, T. Yamada, K. Ito, C.R. Snyder, J.R. Hoffman, C.M. Brown, C.M. Stafford, C.L. Soles, Chem. Mater. 2024 36 (12), 6130-6143
  9. Unraveling Thermally Regulated Gating Mechanisms in TPT Pore-Partitioned MOF-74: A Computational Endeavor, G.A. McCarver, M.J. Kramer, T. Yildirim, W. Zhou, Chemistry of Materials, 2024,  36 (16), 8098-8106.
  10. Integrated CO2 Capture and Conversion by a Robust Cu(I)-Based Metal–Organic Framework, D. Sengupta, S. Bose, X. Wang, N.M. Schweitzer, C.D. Malliakas, H. Xie, J. Duncan, K.O. Kirlikovali, T. Yildirim, O.K. Farha, JACS (ASAP 2024).
  11. Sulfur substitution in Fe-MOF-74: implications for electrocatalytic CO2 and CO reduction from an ab initio perspective, G.A. McCarver, T. Yildirim, W. Zhou, Catal. Sci. Technol., 2024, 14, 2541-2548.
  12. Diels–Alder cycloaddition polymerization for porous poly-phenylenes with exceptional gas uptake properties, T. Ashirov, P.W. Fritz, T. Yildirim, A. Coskun, Chem. Commun., (2024).
  13. Computational examination of transition metal-salen complexes for the reduction of CO2, G.A. McCarver, T. Yildirim, W. Zhou Molecular Catalysis 556, 113819 (2024).
  14. Hetero-Bimetallic Paddlewheel Complexes for Enhanced CO2 Reduction Selectivity: A First Principles Study, G.A. McCarver, T. Yildirim, W. Zhou, Phys. Chem. Chem. Phys., (2024)
  15. Catalyst Engineering for the Selective Reduction of CO2 to CH4: A First-Principles Study on X-MOF-74 (X=Mg, Mn, Fe, Co, Ni, Cu, Zn),  G.A. McCarver, T. Yildirim, W. Zhou, ChemPhysChem, 24, 24, e202300645, (2023).
  16. Exclusive Recognition of CO2 from Hydrocarbons by Aluminum Formate with Hydrogen-Confined Pore Cavities, Z Zhang, Z Deng, HA Evans, D Mullangi, C Kang, SB Peh, Y Wang, C.M. Brown, J. Wang, P. Canepa, A.K. Cheetham, D. Zhao, J. Am. Chem. Soc, 145, 21, 11643, (2023).
  17. Aluminum Formate, Al(HCOO)3: An Earth-Abundant, Scalable, and Highly Selective Material for CO2 Capture, Evans, H. A.; Mullangi, D.; Deng, Z.; Wang, Y.; Peh, S. B.; Wei, F.; Wang, J.; Brown, C. M.; Zhao, D.; Canepa, P.; Cheetham, A. K., Sci. Adv. 2022, 8 (44).
  18. Layered porous molecular crystals via interdigitation-directed assembly, N. Fang, S. Zhang, Z. Xu, S. Chen, X. Zhang, H. Wu, W. Zhou, and Y. Zhao, Cell Rep. Phys. Sci., 4, 101508 (2023).
  19. Reproducible sorbent materials foundry for carbon capture at scale, A. McDannald, H. Joress, B. DeCost, A.E. Baumann, A.G. Kusne, K. Choudhary, T. Yildirim, D.W Siderius, W. Wong-Ng, A.J. Allen, C.M. Stafford, D.L. Ortiz-Montalvo, Cell Reports Physical Science 3 (10) (2022).
  20. Graph neural network predictions of metal organic framework CO2 adsorption properties, K Choudhary, T Yildirim, DW Siderius, AG Kusne, A McDannald, D.L. Ortiz-Montalvo, Computational Materials Science 210, 111388 (2022).
  21. Understanding the Impacts of Support–Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15, Moon, H.J., Carrillo, J.-M., Leisen, J., Sumpter, B.G., Osti, N.C., Tyagi, M., and Jones, C.W., J. Am. Chem. Soc. 144, 11664–11675 (2022)
  22. Maximizing electroactive sites in a three-dimensional covalent organic framework for significantly improved carbon dioxide reduction electrocatalysis, B. Han, Y. Jin, B. Chen, W. Zhou, B. Yu, C. Wei, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Angew. Chem. Int. Ed., 61, e202114244 (2022).
  23. Understanding the Impacts of Support−Polymer Interactions on the Dynamics of Poly(ethyleneimine) Confined in Mesoporous SBA-15H.J. Moon, J.-M. Carrillo, J. Leisen, B.G. Sumpter, N.C. Osti, M. Tyagi, C.W. Jones, J. Am. Chem. Soc., 144, 11664 (2022).
  24.  Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide Reduction, B. Han, Y. Jin, B. Chen, W. Zhou, B. Yu, C. Wei, H. Wang, K. Wang, Y. Chen, B. Chen, J. Jiang, Angew. Chem. Int. Ed., 61, e202114244 (2022).
  25. Highly selective adsorption of carbon dioxide over acetylene in an ultramicroporous metal-organic framework, Y. Shi, Y. Xie, H. Cui, Y. Ye, H. Wu, W. Zhou, H. Arman, R.-B. Lin, B. Chen, Adv. Mater., 33, 2105880 (2021).
  26. Electrostatically-driven selective adsorption of carbon dioxide over acetylene in an ultramicroporous material, Y. Xie, H. Cui, H. Wu, R.-B. Lin, W. Zhou, B. Chen, Angew. Chem. Int. Ed., 60, 9604–9609 (2021).
  27. Robust biological hydrogen-bonded organic framework with post-functionalized rhenium(I) sites for efficient heterogeneous visible light-driven CO2 reduction, B. Yu, L. Li, S. Liu, H. Wang, H. Liu, C. Lin, C. Liu, H. Wu, W. Zhou, X. Li, T. Wang, J. Jiang, B. Chen, Angew. Chem. Int. Ed., 60, 8983–8989 (2021).
  28. A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage, B. Wang, X. Zhang, H. Huang, Z. Zhang, T. Yildirim, W. Zhou, S. Xiang, B. Chen, Nano Research, 14, 507–511 (2021).
  29. Two-Dimensional Covalent Organic Frameworks with Cobalt(II)-Phthalocyanine Sites for Efficient Electrocatalytic Carbon Dioxide ReductionB. Han, X. Ding, B. Yu, H. Wu, W. Zhou, W. Liu, C. Wei, B. Chen, D. Qi, H. Wang, K. Wang, Y. Chen, B. Chen, and J. Jiang, J. Am. Chem. Soc., 143, 7104–7113 (2021).

Presentations

  1. Nanoscale Sponges for H2 Storage, Carbon Capture, and Energy Efficiency, The Global Center for Carbon Cycle (GC3) Studies,  UMD (June 29-21 2024)
  2. Adsorption and separations processes within metal-organic frameworks through neutron scattering, American Crystallographic Association,  Baltimore, MD. (Jul-08 2023)
  3. Neutron Scattering Techniques and How They Can (Hopefully) Help You, Graduate Chemistry Lecture,  Iowa State (April 21, 2023)
  4. Adsorption and separation processes within metal-organic frameworks through neutron scattering, Rice Uni. Physics Dept Seminar (Sept. 2023)
  5. Adsorption and separation processes within metal-organic frameworks through neutron scattering, MRS Spring Meeting (Apr. 2023)
  6. Neutron Scattering to Characterize Adsorbents and Their Host, Polish Chemical Society (Mar. 2023)
  7. Adsorption and separation processes within metal-organic frameworks via neutron scattering, European Conference on Neutron Scattering (Mar. 2023)
  8. Neutron Scattering at the NIST Center for Neutron Research, University of Rochester Chemistry Department Seminar, (Mar. 2023)
  9. Neutron Scattering to Characterize Adsorbents and Their Hosts, APS March Meeting (Mar. 2023)
  10. Adsorption and separation processes within metal-organic frameworks through neutron scattering, International Workshop on Physics and Chemistry of Electronic Material (Dec. 2022)
  11. Adsorption and separation processes within metal-organic frameworks through neutron scattering, Uni. Maryland Physics Dept Seminar (Nov. 2022)
  12. Close to 20 years in MOF research: insights and lessons learned, SNS Frontiers Seminar (Oct 2022)
  13. Neutron and X-ray Scattering to Characterize Adsorbents and Their Hosts, Materials Science & Technology (Oct 2022)
  14. Elevated temperature CO2 capture using a formate-based material (Fundamentals of Adsorption, 14th International Conference, 2022, Bloomfield, CO)
  15. NIST's role in Direct Air Capture and CCUS (Fundamentals of Adsorption, 14th International Conference, 2022, Bloomfield, CO)
  16. NIST's Role in Direct Air Capture and Carbon Removal (2021 NETL Carbon management and oil and gas research project review meeting - carbon dioxide removal research)

New metrologies and capabilities

  1. INFER

Previous efforts:

Reversible switching between nonporous and porous phases of a new SIFSIX coordination network induced by a flexible linker ligand, B.-Q. Song, Q.-Y. Yang, S.-Q. Wang, M. Vandichel, M. Vandichel, A. Kumar, C. M. Crowley, N. Kumar, C.-H. Deng, V. GasconPerez, M. Lusi, H. Wu, W. Zhou, M. J. Zaworotko, J. Am. Chem. Soc., 142, 6896−6901 (2020). https://doi.org/10.1021/jacs.0c01314

A microporous aluminum-based metal-organic framework for high methane, hydrogen, and carbon dioxide storage, B Wang, X Zhang, H Huang, Z Zhang, T Yildirim, W Zhou, S Xiang, ... Nano Research, 1-5  (2020). https://doi.org/10.1007/s12274-020-2713-0

Neutron diffraction structural study of CO2 binding in mixed-metal CPM-200 metal–organic frameworks AJ Campanella, BA Trump, EJ Gosselin, ED Bloch, CM Brown Chemical Communications 56 (17), 2574-2577 (2020). https://pubs.rsc.org/en/content/articlelanding/2020/cc/c9cc09904b/unauth#!divAbstract

Understanding How Ligand Functionalization Influences CO2 and N2 Adsorption in a Sodalite Metal–Organic Framework M Asgari, R Semino, PA Schouwink, I Kochetygov, J Tarver, O Trukhina, ... Chemistry of Materials 32 (4), 1526-1536 (2020).  https://pubs.acs.org/doi/abs/10.1021/acs.chemmater.9b04631

A metal–organic framework with suitable pore size and dual functionalities for highly efficient post-combustion CO2 capture, H.-M. Wen, C. Liao, L. Li, A. Alsalme, Z. Alothman, R. Krishna, H. Wu, W. Zhou, J. Hu, B. Chen, J. Mater. Chem. A, 7, 3128–3134 (2019). https://doi.org/10.1039/C8TA11596F

Controlling pore shape and size of interpenetrated anion-pillared ultramicroporous materials enables molecular sieving of CO2 combined with ultrahigh uptake capacity, M. Jiang, B. Li, X. Cui, Q. Yang, Z. Bao, Y. Yang, H. Wu, W. Zhou, B. Chen, H. Xing, ACS Appl. Mater. Interfaces, 10, 16628–16635 (2018). https://doi.org/10.1021/acsami.8b03358

An experimental and computational study of CO2 adsorption in the sodalite-type M-BTT (M= Cr, Mn, Fe, Cu) metal–organic frameworks featuring open metal sites M Asgari, S Jawahery, ED Bloch, MR Hudson, R Flacau, B Vlaisavljevich, ...Chemical science 9 (20), 4579-4588 (2018). https://pubs.rsc.org/en/content/articlehtml/2018/sc/c8sc00971f

A microporous hydrogen-bonded organic framework with amine sites for selective recognition of small molecules, H. Wang, H. Wu, J. Kan, G. Chang, Z. Yao, B. Li, W. Zhou, S. Xiang, J. C.-G. Zhao, B. Chen, J. Mater. Chem. A, 5, 8292-8296 (2017). http://dx.doi.org/10.1039/C7TA01364G

Highly enhanced gas uptake and selectivity via incorporating methoxy groups into a microporous metal–organic framework, H.-M. Wen, G. Chang, B. Li, R.-B. Lin, T.-L. Hu, W. Zhou, B. Chen, Crystal Growth Des., 17, 2172–2177 (2017). http://dx.doi.org/10.1021/acs.cgd.7b00111

Design of hyperporous graphene networks and their application in solid-amine based carbon capture systems, S Gadipelli, Y Lu, NT Skipper, T Yildirim, Z Guo Journal of Materials Chemistry A 5 (34), 17833-17840 (2017). https://doi.org/10.1039/C7TA05789J

On the Structure–Property Relationships of Cation‐Exchanged ZK‐5 Zeolites for CO2 Adsorption TD Pham, MR Hudson, CM Brown, RF Lobo ChemSusChem 10 (5), 946-957 (2017).  https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201601648

Performance of van der Waals Corrected Functionals for Guest Adsorption in the M2(dobdc) Metal–Organic Frameworks B Vlaisavljevich, J Huck, Z Hulvey, K Lee, JA Mason, JB Neaton, JR Long, ... The Journal of Physical Chemistry A 121 (21), 4139-4151 (2017). https://pubs.acs.org/doi/full/10.1021/acs.jpca.7b00076

Graphene oxide-derived porous materials for hydrogen/methane storage and carbon capture S Gadipelli, T Yildirim, Z Guo, Graphene Science Handbook: Size-Dependent Properties (2016).

From Fundamental Understanding To Predicting New Nanomaterials For High Capacity Hydrogen/Methane Storage and Carbon Capture (Technical Report) | OSTI.GOV. https://www.osti.gov/biblio/1171662

Flexible metal-organic framework compounds: In situ studies for selective CO2 capture AJ Allen, L Espinal, W Wong-Ng, WL Queen, CM Brown, SR Kline, ... Journal of Alloys and Compounds 647, 24-34 (2015). https://www.sciencedirect.com/science/article/pii/S0925838815014589

Understanding Small‐Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with "A Flexible Microporous Hydrogen-Bonded Organic Framework for Gas Sorption and Separation, H. Wang, B. Li, H. Wu, T.-L. Hu, Z. Yao, W. Zhou, S. Xiang, B. Chen, J. Am. Chem. Soc., 137, 9963–9970 (2015). http://dx.doi.org/10.1021/jacs.5b05644

Understanding Small‐Molecule Interactions in Metal–Organic Frameworks: Coupling Experiment with Theory JS Lee, B Vlaisavljevich, DK Britt, CM Brown, M Haranczyk, JB Neaton, ... Advanced Materials 27 (38), 5785-5796 (2015)  https://onlinelibrary.wiley.com/doi/full/10.1002/adma.201500966

Water‐Stable Zirconium‐Based Metal–Organic Framework Material with High‐Surface Area and Gas‐Storage Capacities, OV Gutov, W Bury, DA Gomez‐Gualdron, V Krungleviciute, ... Chemistry–A European Journal 20 (39), 12389-12393  (2014).  https://doi.org/10.1002/chem.201402895

Exceptional CO2 capture in a hierarchically porous carbon with simultaneous high surface area and pore volume, G Srinivas, V Krungleviciute, ZX Guo, T Yildirim Energy & Environmental Science 7 (1), 335-342 (2014). https://doi.org/10.1039/C3EE42918K

Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2 (dobdc)(M= Mg, Mn, Fe, Co, Ni, Cu, Zn) WL Queen, MR Hudson, ED Bloch, JA Mason, MI Gonzalez, JS Lee, ... Chemical Science 5 (12), 4569-4581 (2014). https://pubs.rsc.org/no/content/articlelanding/2014/sc/c4sc02064b/unauth#!divAbstract

Molecular basis for the high CO2 adsorption capacity of chabazite zeolites TD Pham, MR Hudson, CM Brown, RF Lobo ChemSusChem 7 (11), 3031-3038 (2014). https://chemistry-europe.onlinelibrary.wiley.com/doi/abs/10.1002/cssc.201402555

Evaluation of cation-exchanged zeolite adsorbents for post-combustion carbon dioxide capture TH Bae, MR Hudson, JA Mason, WL Queen, JJ Dutton, K Sumida, ... Energy & Environmental Science 6 (1), 128-138 (2013). https://pubs.rsc.org/no/content/articlehtml/2013/ee/c2ee23337a

Gram-scale, high-yield synthesis of a robust metal–organic framework for storing methane and other gases, CE Wilmer, OK Farha, T Yildirim, I Eryazici, V Krungleviciute, AA Sarjeant, ... Energy & Environmental Science 6 (4), 1158-1163  (2013). https://doi.org/10.1039/C3EE24506C

Unusual and highly tunable missing-linker defects in zirconium metal–organic framework UiO-66 and their important effects on gas adsorption. H Wu, YS Chua, V Krungleviciute, M Tyagi, P Chen, T Yildirim, W Zhou Journal of the American Chemical Society 135 (28), 10525-10532  (2013). https://doi.org/10.1021/ja404514r

Graphene oxide derived carbons (GODCs): synthesis and gas adsorption properties, G Srinivas, J Burress, T Yildirim, Energy & Environmental Science 5 (4), 6453-6459 (2012). https://doi.org/10.1039/C2EE21100A

Unconventional, Highly Selective CO2 Adsorption in Zeolite SSZ-13 MR Hudson, WL Queen, JA Mason, DW Fickel, RF Lobo, CM Brown Journal of the American chemical society 134 (4), 1970-1973 (2012). https://pubs.acs.org/doi/abs/10.1021/ja210580b

Microporous metal-organic framework with potential for carbon dioxide capture at ambient conditions, S. Xiang, Y. He, Z. Zhang, H. Wu, W. Zhou, R. Krishna, B. Chen, Nat. Commun., 3, 954 (2012). http://dx.doi.org/10.1038/ncomms1956

Carbon capture in metal–organic frameworks—a comparative study, JM Simmons, H Wu, W Zhou, T Yildirim Energy & Environmental Science 4 (6), 2177-2185 (2011). https://doi.org/10.1039/C0EE00700E

Site-Specific CO2 Adsorption and Zero Thermal Expansion in an Anisotropic Pore Network WL Queen, CM Brown, DK Britt, P Zajdel, MR Hudson, OM Yaghi The Journal of Physical Chemistry C 115 (50), 24915-24919 (2011) https://pubs.acs.org/doi/abs/10.1021/jp208529p

Adsorption Sites and Binding Nature of CO2 in Prototypical Metal−Organic Frameworks: A Combined Neutron Diffraction and First-Principles Study, H Wu, JM Simmons, G Srinivas, W Zhou, T Yildirim The Journal of Physical Chemistry Letters 1 (13), 1946-1951 (2010). https://doi.org/10.1021/jz100558r

Hydrogen storage and carbon dioxide capture in an iron-based sodalite-type metal–organic framework (Fe-BTT) discovered via high-throughput methods K Sumida, S Horike, SS Kaye, ZR Herm, WL Queen, CM Brown, ... Chemical Science 1 (2), 184-191 (2010). https://pubs.rsc.org/lv/content/articlehtml/2010/sc/c0sc00179a

 

Created March 9, 2021, Updated December 3, 2024