Skip to main content
U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock ( ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Wenqi Zhu

Wenqi Zhu is a PML/UMD Postdoctoral Researcher in Microsystems and Nanotechnology Division. He received a B.S. in Electronics Engineering from Tsinghua University, China and a Ph. D. in Engineering Sciences from Harvard. His doctoral research focused on fabricating and characterizing plasmonic optical antennas for use in surface-enhanced Raman scattering. He also has expertise in fabricating terahertz metamaterials and waveguides. Wenqi is working with Henri Lezec on numerically simulating, designing, fabricating, and experimentally characterizing advanced plasmonic devices and metamaterials operating at infrared, visible, and ultraviolet frequencies.

Selected Publications

  • Direct observation of beamed Raman scattering, W. Zhu, D. Wang, and K. B. Crozier, Nano Letters 12, 6235–6543 (2012).
  • Lithographically fabricated optical antennas with gaps well below 10 nm, W. Zhu, M. G. Banaee, D. Wang, Y. Chu, and K. B. Crozier, Small 7, 1761–1766 (2011).
  • Planar plasmonic terahertz guided-wave devices, W. Zhu, A. Agrawal, and A. Nahata, Optics Express 16, 6216–6126 (2008).

Publications

Photorealistic full-color nanopainting enabled by a low-loss metasurface

Author(s)
Pengcheng Huo, Maowen Song, Wenqi Zhu, Cheng Zhang, Lu Chen, Henri J. Lezec, Yanqing Lu, Amit K. Agrawal, Ting Xu
We design and experimentally demonstrate a TiO2 metasurface that enables full-color generation and ultrasmooth color brightness variations. The reproduced

Plasmon Lasers

Author(s)
Wenqi Zhu, Shawn M. Divitt, Matthew S. Davis, Cheng Zhang, Ting Xu, Henri J. Lezec, Amit K. Agrawal
Recent advancements in the ability to design, fabricate and characterize optical and optoelectronic devices at the nanometer scale have led to tremendous

Low-loss Metasurface Optics down to the Deep Ultraviolet

Author(s)
Cheng Zhang, Shawn M. Divitt, Qingbin Fan, Wenqi Zhu, Amit K. Agrawal, Yanqing Lu, Ting Xu, Henri J. Lezec
Metasurfaces, planar arrays of subwavelength electromagnetic structures that collectively mimic the functionality of much thicker conventional optical elements
Created July 30, 2019, Updated April 24, 2020