Skip to main content

NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.

Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.

U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Planar-Optics Based Light Delivery System for Magneto-Optical Traps And Method For Using The Same

Published Patent Application Number: US 2022/0390760 A1

Invention

An apparatus for light delivery to magneto-optical trap (MOT) system utilizes only planar optical diffraction devices including a planar-integrated-circuit PIC and a metasurface MS. When MOT is based on the use of a diffraction grating, a grating chip is additionally employed to launch and manipulate light for laser cooling. Bridging the gap between the sub-micrometer-scale guided mode on the PIC and the centimeter-scale beam needed for laser cooling, a magnification of the mode area by about 10.sup.10 is demonstrated using an on-chip extreme-mode-converter to launch a Gaussian mode into free space from a PIC-waveguide and a beam-shaping, polarization-dependent MS to form a diverging laser beam with a flat-top spatial profile, which efficiently illuminates the grating chip without loss of light. Comparison to equivalent Gaussian-beam-illuminated GMOTs evidences advantageous power efficiency of operation of the proposed light delivery system as compared with conventional systems employing Gaussian distribution of illumination at the grating chip.

Created September 20, 2023, Updated December 15, 2023
Was this page helpful?