NOTICE: Due to a lapse in annual appropriations, most of this website is not being updated. Learn more.
Form submissions will still be accepted but will not receive responses at this time. Sections of this site for programs using non-appropriated funds (such as NVLAP) or those that are excepted from the shutdown (such as CHIPS and NVD) will continue to be updated.
An official website of the United States government
Here’s how you know
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
Secure .gov websites use HTTPS
A lock (
) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.
https://www.nist.gov/patents/inventors/1166951
Search Patents by Wenqi Zhu
Patents listed here reflect only technologies patented from FY 2018-present. To view all of NIST's patented technologies, visit the NIST pages on the Federal Laboratory Consortium website.
In this invention, we employ a novel approach to construct high-performance optical elements operating in the UV and deep-UV regime. Our technology is based on metasurfaces, where we design nanoantennas with sizes a fraction of the scale of the wavelength of UV light and arrange them over a planar
A metasurface optical pulse shaper includes a metasurface with superpixels disposed on an entry side of the metasurface and a wire grid polarizer disposed on an exit surface of the metasurface for controlling a phase, amplitude, or polarization of an optical pulse, wherein the metasurface in
Shrinking conventional optical systems to chip-scale dimensions will benefit custom applications in imaging, displaying, sensing, spectroscopy, and metrology. Towards this goal, metasurfaces — planar arrays of subwavelength electromagnetic structures that collectively mimic the functionality of
William McGehee
,
Jabez J McClelland
,
Vladimir Aksyuk
and
Wenqi Zhu
An apparatus for light delivery to magneto-optical trap (MOT) system utilizes only planar optical diffraction devices including a planar-integrated-circuit PIC and a metasurface MS. When MOT is based on the use of a diffraction grating, a grating chip is additionally employed to launch and