Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Thomas Mitchell Wallis (Fed)


Looking Forward to IMS 2022 (Guest Editorial)

Thomas Mitchell (Mitch) Wallis
As guest editor, it's my pleasure to welcome you to this issue of IEEE Microwave Magazine. This issue focuses on the 2022 International Microwave Symposium (IMS

Nanoscale Photoexcited Carrier Dynamics in Perovskites

Samuel Berweger, Fei Zhang, Bryon Larson, Andrew Ferguson, Axel Palmstrom, Obadiah Reid, Thomas Mitchell (Mitch) Wallis, Kai Zhu, Joseph Berry, Pavel Kabos, Sanjini Nanayakkara
The excellent optoelectronic properties of lead-halide perovskite thin films are complemented by their tolerance to broad compositional variations and

Imaging of Magnetic Excitations in Nanostructures with Microwave Near-Field Microscopy

Samuel Berweger, Robert Tyrrell-Ead, Houchen Chang, Mingzhong Wu, Hong Tang, Hans Nembach, Karl Stupic, Stephen E. Russek, Thomas Mitchell (Mitch) Wallis, Pavel Kabos
We present images of spin-wave excitations in a patterned yttrium iron garnet (YIG) thin film obtained by use of near-field microwave microscopy, which can

Spatially Resolved Photoconductivity in WS2/MoS2 lateral heterostructures

Samuel Berweger, Hanyu Zhang, Prasana Sahoo, Benjamin Kupp, Jeffrey Blackburn, Elisa Miller, Thomas Mitchell (Mitch) Wallis, Dmitri Voronine, Pavel Kabos, Sanjini Nanayakkara
The optical and electronic properties of 2D semiconductors are intrinsically linked via the strong interactions between optically excited bound species and free

Microscopic Origin of Inhomogeneous Transport in Four-Terminal Tellurene Devices

Benjamin Kupp, Gang Qiu, Yixiu Wang, Clayton Caspeer, Thomas Mitchell (Mitch) Wallis, Joanna Atkin, Wenzhuo Wu, Peide Ye, Pavel Kabos, Samuel Berweger
Tellurene—the 2D form of elemental tellurium—provides an attractive alternative to conventional 2D semiconductors due to its high bipolar mobilities, facile
Created October 9, 2019, Updated December 8, 2022