Skip to main content
U.S. flag

An official website of the United States government

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS
A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Jacob Taylor (Fed)

Jake Taylor is a NIST Fellow, a Fellow of the Joint Quantum Institute (JQI), and co-founder and Fellow of the Joint Center for Quantum Information and Computer Science (QuICS). He served from 2017-2020 as the first Assistant Director for Quantum Information Science at the White House Office of Science and Technology Policy (OSTP), and founded and led the National Quantum Coordination Office ( from 2019-2020.

Fascinated with astrophysics as an undergraduate, Taylor began his research career examining rarified gases and stellar clusters. A one-year position as a Luce Scholar introduced him to special-purpose computing, and in graduate school he returned to Harvard to focus on quantum computing. After receiving his PhD in physics, he moved to MIT as a Pappalardo Fellow, before starting his research group at NIST, and joining the JQI, in 2009. Five years later, he co-founded QuICS --- a joint governmental-academic effort --- to connect computer scientists and physicists working on quantum coherent devices. From 2017-2020, he was detailed to OSTP to help guide the Nation’s effort to advance American leadership in quantum information science. His efforts there helped enable the passage and implementation of the National Quantum Initiative, including standing up and directing the National Quantum Coordination Office, in additional to advancing the future of high performance computing by developing the National Strategic Computing Initiative’s 2020 strategic plan and through the co-creation of the COVID-19 HPC Computing Consortium. A Fellow of the American Physical Society and the Optical Society of America, Taylor is also the recipient of the Department of Commerce Gold and Silver Medals, the IUPAP C15 Young Scientist Award, the Samuel J. Heyman Service to America Medal: Call to Service, the Presidential Early Career Award for Science and Engineering, and the Newcomb Cleveland prize of the AAAS.


Robust Automated Recognition of Noisy Quantum Dot States

Joshua Ziegler, Thomas McJunkin, Emily Joseph, Sandesh Kalantre, Benjamin Harpt, Donald Savage, Max Lagally, Mark Eriksson, Jacob Taylor, Justyna Zwolak
The current autotuning approaches for quantum dot (QD) devices, while showing some success, lack an assessment of data reliability. This leads to unexpected

Ray-based framework for state identification in quantum dot devices

Justyna Zwolak, Thomas McJunkin, Sandesh Kalantre, Samuel Neyens, Evan MacQuarrie, Mark A. Eriksson, Jacob Taylor
Quantum dots (QDs) defined with electrostatic gates are a leading platform for a scalable quantum computing implementation. However, with increasing numbers of

Mechanical Quantum Sensing in the Search for Dark Matter

Jacob Taylor, Gadi Afek, Sunil Bhave, Daniel Carney, Gordan Krnjaic, David Moore, Robinjeet Singh, Cindy Regal, Benjamin M. Brubaker, Andrew Geraci, Jonathan D. Cripe, Sohitri Ghosh, Jack Harris, Anson Hook, Jonathan Kunjummen, Rafael Lang, Li Tongcang, Tongyan Lin, Zhen Liu, Joseph Lykken, Lorenzo Magrini, Jack Manley, Nobuyuki Matsumoto, Alissa Monte, Fernando Monteiro, Thomas Purdy, C. J. Riedel, Swati Singh, Kanupriya Sinha, Juehang Qin, Dalziel Wilson, Yue Zhao
Numerous astrophysical and cosmological observations are best explained by the existence of dark matter, a mass density which interacts only very weakly with


Optomechnical Gravimeter

NIST Inventors
Jacob Taylor and Jon R. Pratt
Patent Description Currently many space projects require, at their core, sensors capable of measuring spurious forces acting on the spacecraft with extremely high sensitivity at ng/√Hz levels and below, particularly for high accuracy navigation and drag-free flight. NIST has developed a novel and
Photonic thermometer packages

Optical Temperature Sensor

NIST Inventors
Zeeshan Ahmed , Stephen Semancik , Jacob Taylor and Gregory F. Strouse
The photonic temperature sensor relies on ultra-sensitive, frequency-based measurements of the effect of heat on the dimensions and predominant thermo-optic properties of the photonic resonator.
This image of a chart titled "How does it work" that describes the optomechanical reference.

Optomechanical Reference

NIST Inventors
Gordon A. Shaw and Jacob Taylor
A mechanical sensor incorporating an optical cavity is used to provide a mass and/or force reference from a known or characterized circulating optical power in the optical cavity. The radiation pressure force in the optical cavity is used to actuate the mechanical sensor. The optical cavity in put
Created July 17, 2018, Updated July 11, 2022